
RAL-PPD Academic Training 2007-2008

Computer – Hardware
Interactions (with emphasis on VME)

5-Mar-2008

Norman Gee

28-Feb-2007 Norman Gee - Computers interacting with Hardware 2

Overview

- Classes of Interaction
- Mapped I/O
- Hardware - VMEbus, with a short interlude on VME cycle internals

- Interfacing between Computer and VMEbus
- DMA vs Block Transfer, VME extensions

- Hints and Tips
- Summary
- Bibliography
- Q&A

28-Feb-2007 Norman Gee - Computers interacting with Hardware 3

Classes of Interaction

CPU – Controller CPU – Slave (memory)

Distances At least several metres 0.3m or less

Media Cable, Fibre; Traces on PC boards & backplanes;

Format Serial data Parallel data

Speed and common examples:

Slow (to 1Mb/s) (RS232), CANbus, GPIB (CAMAC)

Medium (to 100 MB/s) USB, Firewire, Ethernet VME, PCI

Fast (100 MB/s +) Gigabit Ethernet, Telecoms PCI-X, PCI-e

Licence to crash system

28-Feb-2007 Norman Gee - Computers interacting with Hardware 4

Mapped I/O - Virtual Memory

32-bit Virtual Address Space

Address (32 bits)

Page No Offset

Physical Page No Offset

Physical Address Space

Page Table

12 bits20 bits

P

0
1
2
3

1

0

3

2

Virtual Page Numbers
Virtual pages scattered in physical memory

1

28-Feb-2007 Norman Gee - Computers interacting with Hardware 5

Virtual Memory

• Note:
– Some virtual memory isn’t in physical memory

(paging, swapping)
– Some physical memory isn’t visible from your code (unmapped or protected)
– Virtually contiguous pages are normally physically discontiguous

– The page table itself is held in memory, so virtual-to-physical translation involves an
extra memory access… which takes time

• The CPU has a cache of translated (page) addresses - “Translation Lookaside Buffer” TLB
• A program needs several translated addresses at once (program code, data areas, stack,…)

– The stack normally lives in high virtual memory so that it can expand downwards
• The page table has to cover the whole 32-bit virtual address range, so gets BIG

32-bit Virtual Address Space

Address pointer (32 bits)

Page No Offset

Physical Page No Offset

Physical Address Space

Page Table

12 bits20 bits

P

0
1
2
3

1

0

3

2

Virtual Page Numbers
Virtual pages scattered in physical memory

28-Feb-2007 Norman Gee - Computers interacting with Hardware 6

Segmented Page Tables and Hardware

Virtual Address Space

Address pointer (32 bits)

VPN1 VPN2 Offset

Physical Page No Offset

Physical Address Space

Page Directory

12 bits

10 bits

Page Tables

10 bits

PDBR
P

0
1
2
3

1

0

3

2
n

n

28-Feb-2007 Norman Gee - Computers interacting with Hardware 7

Segmented Page Tables and Hardware

• Note:
– Hardware appears in the physical address space,

looking rather like memory
– Placed at physical addresses above memory
– Consumes complete pages (no mixed hardware/memory pages)
– The physical hardware addresses may be fixed in the hardware, or may be controlled

by registers or maps in the hardware
• …which the operating system must set up

– To be visible to your program, your page tables must point to the hardware addresses
• Your program (or the operating system on your behalf) will see the hardware at virtual

addresses.
– Other programs may see the same hardware (via their page tables) at different virtual

addresses
• Most user programs are not mapped to most hardware, or the pages are protected

Virtual Address Space

Address pointer (32 bits)

VPN1 VPN2 Offset

Physical Page No Offset

Physical Address Space

Page Directory

12 bits

10 bits

Page Tables

10 bits

PDBR
P

0
1
2
3

1

0

3

2
n

n

28-Feb-2007 Norman Gee - Computers interacting with Hardware 8

Accessing Mapped Hardware

Virtual Address Space

Address pointer (32 bits)

VPN1 VPN2 Offset

Physical Page No Offset

Physical Address Space

Page Directory

12 bits

10 bits

Page Tables

10 bits

PDBR
P

0
1
2
3

1

0

3

2
n

n

HW1
HW1

28-Feb-2007 Norman Gee - Computers interacting with Hardware 9

Real Hardware

• Can connect hardware in a variety of different ways…
– Specialised: PCI bus interfaces to e.g. SCSI, IDE (disks);
– General purpose: PCI bus interfaces to other formats - e.g. USB, Firewire,…

• The interface will have internal addresses and may map external ones
(this is where controller and slave media diverge)

• Hardware needing only few addresses will be allocated a small fixed range of
physical addresses (hardwired or at boot time)

• For a larger address range, hardware may have a second layer of mapping logic
(like memory) to determine where device addresses appear in system address
space

• If the Hardware has a really big address space, there may not be enough spare
physical address space to map all of it at the same time
– …so you may have to change the mapping for every access

28-Feb-2007 Norman Gee - Computers interacting with Hardware 10

The interface from Computer … to VME

• Most VME single board computers
use the Tundra “Universe” chip
to link to VME

• Connects to the CPU via PCI bus
– R/W cycles (address, data)

• Two connections/maps involved:
– CPU virtual to physical
– PCI (=physical) to VME

• CPU read/write instructions
translate directly to PCI cycles
and thence to VME cycles

28-Feb-2007 Norman Gee - Computers interacting with Hardware 11

Summary so far…

• Most common computer connections expect an isolated controller at the far end
of a link
– but VME is not like this, the slave modules can be densely packed and very

stupid
• Hardware has to appear in system address space

– … looking like memory
• The computer’s memory management tables must map the hardware into virtual

address space
– … so that your software can see it

• The next section exposes some details of VME, its protocols and its mapping
system, and high-speed data transfer

28-Feb-2007 Norman Gee - Computers interacting with Hardware 12

VMEbus

• VMEbus is an international standard. It is used in nearly every HEP experiment
to connect computers to detectors, using a mix of commercial and home-made
modules

• The standard provides:
– Precise mechanical specs
– Precise electrical specs

• Components – mostly commercial:
– Crate providing power & Cooling;
– 21 numbered slots
– One or more controllers (one in slot 1)

• Typically a single-board computer
– Slave modules – detector readout,

counters,…
– Backplane to interconnect modules

28-Feb-2007 Norman Gee - Computers interacting with Hardware 13

VMEbus – Backplane Signal summary

• Like Motorola 68000 signals, extended into a bus, grown to 32 bits
– Handshake protocol – dialogue between Master and Slave

• Connectors carry the same signals on the same connector pins in each slot
– Most signals are bussed; a few are daisy-chained; a few are special
– Signals are +5V or 0V (some other levels introduced recently, not in common use)
– Normally +5V = logic “1”, but “*” in a signal name means +5V = logic “0”

• Data transfer
– 31 address lines A31-A1(!) + AM5-AM0 + DS0* & DS1* + LWORD*;
– 32 data lines D31 – D0;
– AS*, (DS0*, DS1*), BERR*,DTACK*, WRITE* plus others in VME64

• Arbitration
– 14 signals. Determine which module becomes master and when

• Priority interrupts
– 10 signals

• Utility bus
– SYSCLK*, SYSRESET*, SYSFAIL*, ACFAIL* plus others in VME64

28-Feb-2007 Norman Gee - Computers interacting with Hardware 14

VMEbus – data transfer

“Timing Diagram”

28-Feb-2007 Norman Gee - Computers interacting with Hardware 15

Example: VME Write Cycle (excluding arbitration)
• Master:
• Assert Address, AM Code (cycle type – e.g. 0x09 = A32, D32)
• Assert WRITE*, LWORD*
• Assert AS*
• Assert Data
• Assert DS*

• Slave:
• Inspect Address & AM Code
• Capture Address & Data
• Assert DTACK*

• Master:
• Remove Address, AM & AS*
• Remove Data & DS*

• Slave:
• Remove DTACK*

• There are many other types of cycle – e.g. up to A64, up to D64

28-Feb-2007 Norman Gee - Computers interacting with Hardware 16

Overview of the Universe
(“Tundra Universe”, that is)

• Manual has 467 pages!!
• Three main sets of functions to support CPU as

– a VME Master (computer-initiated cycles)
• The normal case

– a VME Slave (another VME module
reads or writes into our computer)

• The other VME module is probably
another computer!!

– an Interrupt handler
• Quite often needed
• Very briefly discussed later

28-Feb-2007 Norman Gee - Computers interacting with Hardware 17

Universe as VME Master
Virtual Address Space

Address pointer (32 bits)

VPN1 VPN2 Offset

Physical Page No Offset

Physical Address Space

Page Directory

12 bits

10 bits

Page Tables

10 bits

PDBR
P

0
1
2
3

1

0

3

2
n

n

SpecialSpecial

3
Physical

PCI

VME A16 addr =position in "A16" space

VME A24 addr = position in "A24" space

Universe "images"
(Universe-II has 8)

VME addr = PCI addr + offset [31:12].
A16, A24, A32, CR/CSR,..

Image Size, VME_Base and offset,
addressing mode all programmable.2

1

0

Memory

Special
image

BIOS etc

BIOS etc

VME

28-Feb-2007 Norman Gee - Computers interacting with Hardware 18

Summary so far…

• VME is an international standard covering electrical and mechanical details
– There are many commercial modules around, institutes commonly make their

own as well
• The protocol involves a handshake between DS(0,1) and DTACK

– Every cycle has a defined master and slave
• Interface hardware maps VME addresses into system physical address space

– … looking like memory. An application may need several maps
• The computer’s memory management tables must map the hardware into virtual

address space
– … so that your software can see it

• Now your software is talking to the hardware. The next section is about how to be
fast

28-Feb-2007 Norman Gee - Computers interacting with Hardware 19

Direct Memory Access - DMA

• Data collection usually involves reading a block of data into computer memory:
for (i=0; i<ncycles; i++) { Q: Could I code this to run faster??

*destination++ = *source++; }
• This is CPU intensive (CPU cycles slow down to bus speeds)
• Most PCI interfaces have DMA hardware to do this job faster and autonomously

– The CPU sets up the details of the multi-cycle transfer, then starts it
• Then the CPU is free for other work until the transfer completes

– Each individual VME cycle is done by the DMA. Resulting data is written directly to
physical computer memory. DMA is PCI AND VME master

– The target VME module can’t tell, except that the interval BETWEEN cycles is shorter.
The timing INSIDE a cycle is identical

– At the end, an interrupt may be generated, or the software can ask “Finished?
• What does the DMA hardware need to know?

– First source address (in VME); Type of VME cycle to do;
– First destination address (in PHYSICAL memory)
– End Condition (e.g. number of bytes to transfer)

• The PCI bus is optimised for this sort of traffic – the addresses are sent once per block

28-Feb-2007 Norman Gee - Computers interacting with Hardware 20

Block Transfers

• Many people use the terms DMA and Block Transfer as synonyms
• They are NOT

• DMA is a way of moving data to/from memory without involving the CPU
• Block Transfer (next slides) uses a different type of VME cycle to move data

faster
• DMA can use ordinary VME cycles, and does NOT require block transfer.
• Block transfer DOES require DMA

• >> If you specify modules, be clear about what you mean
– Making a module DMA-compliant needs no extra work. Making it block-

transfer compliant may be quite hard

28-Feb-2007 Norman Gee - Computers interacting with Hardware 21

VMEbus block transfers (MBLT - new in VME64)

• A fast use of VME, for
DMA transfers only.

• Different master-slave
contract, indicated by a
different AM Code
(e.g. 0x08)

• Address sent only once
– then incremented

internally by Master &
Slave after each data
transfer

• Data and address lines all
used for data transfer

• No arbitration for bus
mastership between cycles

28-Feb-2007 Norman Gee - Computers interacting with Hardware 22

Chained DMA

• The DMA paradigm unlocks several tricks to go much faster
• Chained DMA is useful because reading several modules one after another is very

common
• Set up a linked list in memory, containing command packets for transactions to be done:

– Read 100 words from module 1 (at addr 0x123400, A32, D32, AM=0x09);
– Then 80 words from module 2 (somewhere else in VME space);
– etc. The last command packet has an “end” marker.

• Each entry in the list has all the info to set up the DMA for one contiguous transfer
• Hand the address of the list to the DMA controller, say GO

– The DMA processes the complete list as one transaction

• During disk swapping and paging, the same idea is used to transfer data between
physically discontiguous memory pages and disk blocks

28-Feb-2007 Norman Gee - Computers interacting with Hardware 23

VME64 and extensions (VME64x, VME64xP)

• New cycle types allow for 40- or 64-bit addresses by borrowing some of the data
lines
– The Address Modifier (AM) codes tell the slave what is happening
– Not all slaves support A40 or A64 addresses
– Of course the data lines can’t be used for data during the address part of the

cycle
• 64-bit data transfer (“MBLT”) is possible using D32, A31, & LWORD lines

– 64-bit data can’t be sent while the address lines are in use
• 2eVME transfers capture address or data on each transition of strobes

• 160 Mbytes/sec is claimed for latest VME extensions. I’ve had ~few Mbyte/sec in
programmed cycles, 20 Mbyte/sec in DMA. Getting high speeds needs great care

28-Feb-2007 Norman Gee - Computers interacting with Hardware 24

Summary so far

• There are several ways to make VME go faster.
– Being really fast is demanding

• DMA issues identical VME cycles, but without the CPU
– Cycles are more frequent, PCI traffic is in blocks

• Block transfers use DMA with different VME protocols
– Address sent only once on VMEbus. Faster than bare DMA
– Can use wider data in this mode

• Chained DMA joins a sequence of DMA transfers together as one transaction

• Next: Interrupts and Errors

28-Feb-2007 Norman Gee - Computers interacting with Hardware 25

VME Interrupts (outline)

• Module wants to attract attention of CPU
– Some condition satisfied – e.g. front panel input signal from scintillator, count

has reached a preset value,…
• Module asserts one if the 7 interrupt request (IRQ*) lines
• Responding, the SBC becomes bus master

– SBC (actually Universe) Issues a “Status/ID” read request (i.e. reads interrupt
vector)

• VME Module responds with interrupt vector (normally 8 bits)
– Which the Tundra stores in a PCI-readable register.

• Tundra generates PCI interrupt
• CPU processes interrupt, calls VME Interrupt handler
• VME interrupt handler reads vector from Tundra

– Vector is used to identify target process, to which a Linux signal is sent
• The application’s signal handler should start by clearing the module interrupt

28-Feb-2007 Norman Gee - Computers interacting with Hardware 26

VME interrupt caveats

• The Status/ID read cycle uses the special VME IACK* line
– This is a daisy-chain between slots, not a bus
– Jumpers must be installed to bridge empty slots between the interrupting

module and the crate master
• Failure to do this will cause a system hang – the interrupt can’t be processed or

cleared. So put the interrupting module as near to the CPU as possible
• Think carefully about interrupts vs polling
• To reduce deadtime, prepare the DMA before the interrupt arrives

– Then just start it when your event is ready to read out
• The interrupt vector will be set by jumpers or switches on the module

– Make sure your documentation fully describes the procedure to replace a
broken module (same slot, copy the jumper settings) or replace a crate
(same crate backplane jumper settings)

28-Feb-2007 Norman Gee - Computers interacting with Hardware 27

Error Detection and Handling

• VME doesn’t have any checking that the data and address arrive correctly
– But in fact when properly set up, poor data or addresses are very rare
– If you need high-reliability transfers, structure the data accordingly

• e.g. include parity or crc fields in memory blocks
• A very common error is an attempt to address a missing module

– A normal cycle is terminated by the slave generation of DTACK*. If there is
no slave, the cycle could continue for ever

– After 64μs, the bus timer will assert BERR* - “Bus Error”
– VME master must now terminate the cycle
– If the master is a computer interface, it will normally raise an interrupt
– Interrupt handler can throw an exception which you can catch

28-Feb-2007 Norman Gee - Computers interacting with Hardware 28

Bus error handling – code example

Your code:

long value;
volatile long *myVmeRegister;
try {

value = *myVmeRegister;
cout << “ I read value: “ << value << std::eol;

}
catch (BusError& error) {

std::cout << “ Bus error – myVmeRegister doesn’t respond.” << std:: eol;
}

28-Feb-2007 Norman Gee - Computers interacting with Hardware 29

Practical Hints and Tips
• Take scope shots of signals in the working system so you know want to expect
• Obtain or write a general purpose VME exerciser software tool

– It is essential to be able to scan address space for modules, issue single read
or write cycles, etc.

• Use only 16-bit or only 32-bit integers unless other formats are essential
• If you make your own modules

– Ask your engineers to add scope test points for VME signals
• At least AS*, DS0*,DS1*, DTACK*, D0, board select.

– Ask for a “board-select” light (to show when you are addressing the module)
– Ask your engineers to obey the VME spec fully – it’ll bite you later otherwise

• In C/C++, declare hardware registers “volatile” to prevent the compiler from
optimising them away

28-Feb-2007 Norman Gee - Computers interacting with Hardware 30

Hints and Tips (2)

• Buy a VME extender module – use it to access module internals and VME buys
signals for diagnostics – and a VME Bus Display Module

28-Feb-2007 Norman Gee - Computers interacting with Hardware 31

Hints and Tips (3)
• Be aware of…

backplane jumpers old-style backplanes with bars in the J0 position
Note: Check if crates and modules use 3-row or 5-row connectors

BG
0-3

IACK*

28-Feb-2007 Norman Gee - Computers interacting with Hardware 32

• The old module will fit an old crate backplane. The new module will not.

Old module (VME32) New module (VME64)

• …but both will work in a VME64 crate

Hints and Tips (4)

28-Feb-2007 Norman Gee - Computers interacting with Hardware 33

Hints and Tips (5)

• Store unused VME modules upside-down in a crate, so they can’t be pushed
part-way into the backplane

• *** Don’t use the front panel screws to pull a module into a crate ***

• Observe antistatic precautions
• On holiday, learn how to use a

logic analyser

28-Feb-2007 Norman Gee - Computers interacting with Hardware 34

References

• The VMEbus Handbook, by Wade Peterson, Published by VMEbus International
Trade Association (VITA), from https://www.vita.com/online-store.html

• Tundra Universe Specification, at http://www.tundra.com/products.aspx?id=1643

• American National Standard for VME 64 Extensions (i.e. VME64x), ANSI/VITA
1.1-1997, from VITA as above

• American National Standard for VME 64 Extensions for Physics and Other
Applications (i.e.VME64xP), ANSI/VITA 23-1998, from VITA as above (as PDF)

• PCI – introductory material in Wikipedia

• RAL has occasionally run a 1-2 day VME course

	RAL-PPD Academic Training 2007-2008�� Computer – Hardware Interactions�(with emphasis on VME)�
	Overview
	Classes of Interaction
	Mapped I/O - Virtual Memory
	Virtual Memory
	Segmented Page Tables and Hardware
	Segmented Page Tables and Hardware
	Accessing Mapped Hardware
	Real Hardware
	The interface from Computer … to VME
	Summary so far…
	VMEbus
	VMEbus – Backplane Signal summary
	VMEbus – data transfer
	Example: VME Write Cycle (excluding arbitration)
	Overview of the Universe�(“Tundra Universe”, that is)
	Universe as VME Master
	Summary so far…
	Direct Memory Access - DMA
	Block Transfers
	VMEbus block transfers (MBLT - new in VME64)
	Chained DMA
	VME64 and extensions (VME64x, VME64xP)
	Summary so far
	VME Interrupts (outline)
	VME interrupt caveats
	Error Detection and Handling
	Bus error handling – code example
	Practical Hints and Tips
	Hints and Tips (2)
	Hints and Tips (3)
	Hints and Tips (4)
	Hints and Tips (5)
	References

