THE 'MULTIPLICIY JUMP!' – FINDING B'S IN MULTI-TEV JETS W/O TRACKS

TODD HUFFMAN, OXFORD UNIVERSITY

THOMAS RUSSELL, CURRENTLY @ BLOOMBERG L.P. JEFF TSENG, OXFORD UNIVERSITY

ARXIV:1701.06832

ALSO: 2016 J.PHYS. G: NUCL. PART. PHYS. 43 085001

OUTLINE

Why do we want to tag b-jets?

Explain the "multiplicity jump" technique (aka – Todd's crazy idea)

The "invented" parameter F_i

Pile-up and luminous region

Using an Artificial Neural Net (ANN)

- (It's not "deep" enough to be a DNN)
- Learning a little from "deep learning"

Future prospects @ ATLAS

B HADRON'S IN JETS? WHY BOTHER -

Dijet Searches

Goal: Search for non-resonant new physics using angular distribution of dijet events

e.g. Contact Interaction (CI)

Lydia Beresford (Oxford)

Dijet Searches with the ATLAS Detector

UNIVERSITY OF

3

ANOTHER EXAMPLE -- **BOOSTED** $2H \rightarrow WW BB ANALYSIS$

1-lepton final state hh \rightarrow bb + WW* \rightarrow bb + lvqq

Boosted analysis

 $h \rightarrow bb$ reconstruction with <u>large-R jet</u>.

BASIC POINT OF SEARCHES

DIJETS ATLAS SEARCH - 2016

want to b-tag these jets

Taken from Nature Physics 7, 2–3 (2011);

H→BB 80% BRANCHING RATIO

HIGGS HUNTING EXAMPLE HH \rightarrow 4B'S

ATLAS-CONF-2016-049

PROBLEM: TAG HIGH P_T B-JET

PROBLEM: TAG HIGH P_T B-JET

Much great work happening

From CMS btag note CMS PAS BTV-15-001

Why it happens

B-TAGGERS FIGHT RELATIVITY

Small cone sizes are prevalent. $\Delta R \approx 0.04$ for a B in a 500+ GeV Jet.

200 GeV B hadron $\gamma = 40$ $\gamma c\tau = 18 \text{ mm}$ 1 TeV B hadron **γ = 200** $\gamma c \tau = 90 \text{ mm}$ Radius 1st layer = 25 mm

>2.5 TEV JETS SEEN!

B. Todd Huffman - Oxford University

4

SILICON VERTEX DETECTOR

Silicon Detectors

- Reversed biased diodes
- Crank the reverse voltage up until they are fully depleted

Charged Particle liberates electron-hole pairs

- Small pulse of current
- Amplify it and record the hit.

PIXEL DETECTOR ~ 150 µm Many thousands of tiny sensors SiO₂ AI 50 μm x 250 μm and 300 μm thick p+-Si n-Si - n+-Si V > 0

16

Building the discriminant

http://iopscience.iop.org/article/10.1088/0954-3899/43/8/085001/pdf https://arxiv.org/pdf/1701.06832.pdf

$$f_j = \frac{N_{j+1} - N_j}{N_j}$$
$$Jump = Max(j_1, j_2, j_3)$$

ENERGY-FRACTION OF B HADRONS? DOES IT DEPEND ON JET ENERGY?

Energy fraction of B hadrons as Jet energy increases

- x_B Logarithmic?
- x_B Non-linear?
- x_B Constant?
- If Jet energy → more tracks
 - Helps taggers

Let's at least find out what simulations say!

B HADRON ENERGY FRACTION

(PYTHIA+FASTJET)

The energy of B hadrons in our simulation

So as Jet energy increases, the problems of B-taggers will get worse.

And more B hadrons will decay inside the detector volume.

However; Fraction of Jet energy each B hadron has does not strongly depend on energy of the jet.

SIMULATION DETAILS

Generator level simulation \rightarrow Pythia 8

- pp collider with $\sqrt{s} = 13 \text{ TeV}$
- Generate hard QCD; $P_T > 700 \text{ GeV}$
- Use EvtGen to get B hadron decays correct

Jet simulation \rightarrow FastJet 3

- Anti- k_T algorithm for forming jets
- Can set jet cone size
 - We've used R = 0.2

Semi-Toy Detector simulation \rightarrow GEANT4

- Volume \rightarrow Cylinder 1.4 m radius filled with air, 2T mag. Field
- Silicon layers
 - Active at radii 25, 50, 88, and 122 mm
 - "Pixels" 50 x 400 x 300 μm (φ x *z* x *r*)
 - inner layer 50 x 250 x 300 μ m \rightarrow IBL-like
 - Passive cylinders 2.5 mm thick $\rightarrow X_0=2.5\%$ per layer

\triangle HIT FRACTION \rightarrow $\mathbf{F}_{\mathbf{I}}$

We *define* a quantity we call "Hit-difference Ratio" or "Hit-ratio" for short \rightarrow "f_i".

• Use cone $\Delta R < 0.04$ around jet axis.

from ith layer: $f_i = (\#hits_{i+1} - \#hits_i)/\#hits_i$

- Can only have positive or zero hits, so:
- f_i is bounded from below by -1. & unbounded from above.

Have a look at the f_i distribution. Note: This sample → 0.5 to 2.5 TeV jets.

\triangle HIT FRACTION = F_I

Simulation $Z' \rightarrow u, d, s, c$, and b quarks only. This looked promising \rightarrow next use it as a cut variable

Pileup - f_i

How does pileup affect our f_i?

B. Todd Huffman - Oxford University

Pileup - Conclusion

- Tagger insensitive to increased pileup (tested to pileup with $\lambda = 200$),
 - little change in $f_i > 0$
- Makes sense most pileup does not result in hits in R<0.04 between layers.

NOTE: All plots now have pileup with $\lambda = 45$.

$\textbf{APPLYING } \triangle \textbf{HIT}_{\textbf{F}} \textbf{ CUT}$

Start at f_i= -1.0 (i.e. no cut at all)

And Start increasing the cut.

At each cut value, Plot (Number of Events passing cut)/(number of starting events)

NOTE! Only count B hadron jets where B decayed inside the layers!

"ALL Layers" plot is logical OR of individual layers

• if any one of the Δ Hit_f between any pair of layers passes the cut, the event passes.

EFFICIENCY VS. JET ENERGY

Some uds separation – efficient for high Pt jets

ARTIFICIAL NEURAL NETWORK

Building the ANN

ROC analysis showed that 8-layer ANN was as effective as a 2-layer ANN \rightarrow not really a "deep learning" problem, Reducible, small feature set. Fewer node layers means less chance of overfitting. Used TMVA for a "standard HEP" packaged ANN. Activation function was tanh(x).

Input Layer:

- Raw hits in each layer
- Multiplicites f₁, f₂, f₃
- $\max(f_1, f_2, f_3)$

- Jet Energy, p_T and mass

2 Hidden layers: 16 and 5 neurons wide.

(Smaller second hidden layer helps prevent overfitting).

Architecture → educated guessing. Too many combinations to evaluate

Training Sample

- Training sample had min p_T of interaction at 700GeV.
- 1 million general hard QCD events (anything goes), 300,000 hard QCD events resulting in B-hadron production.

Testing is then done on an independent hard QCD sample.

Choosing a ML technique

- Each ML technique has a distinct set of advantages/disadvantages.
- ROC curve (Signal Purity vs. Signal Efficiency)

ANN TEST MC RESULTS

WITH \rightarrow ANN OUTPUT>0.9

Comparison of Cuts ($F \ge 1$) and ANN

WITH \rightarrow ANN OUTPUT>0.75

Comparison of Cuts (F \geq 1) and ANN

Neural Net seems to find Nhit4 – Nhit1 \rightarrow good discriminator

HEAT MAP

Straight hit difference between layer 4 and layer 1.

Definite advantage can be seen.

B. Todd Huffman - Oxford University

36

ANN OUTPUT DEPENDENCE (EXAMPLES)

NN is just a complicated function $h(x_i) - Look$ at $\Delta h/\Delta x_i$

MAX(F)

Trained NN output is ~100 times more sensitive to Max(F) than to Jet Energy

Conclude: The Machine is focused on the "right" types of quantities.

LAST THING – MULTIPLE CONE SIZES

Include more B hadron decay products @ lower Energy

ΔR <0.04, ΔR <0.1 and ΔR <0.2 added Each with own set of inputs

CONCLUSIONS

Using Mulitvariate techniques significantly improves rejection of uds jets.

Results robust to pile-up

Multiplicity Jump technique more immune to searchlight effect and highly boosted B hadrons.

If continues to show promise, could be added to existing taggers to enhance efficiency at TeV scale jet energies.

Experiments (ATLAS, CMS) are looking into the technique with full simulations \rightarrow Clear next step.

HAND OFF TO ATLAS & CMS!!

DEAD MATERIAL REMOVED – NO EARLY SHOWERS

B. Todd Huffman - Oxford University

ANN - STRAIGHT CUT COMPARISON

Neural Net Efficiency/Mistag ratio

$MAX(F_{1,}F_{2},F_{3}) > \triangle HIT$

Completeness **Charm jets** Efficiency of c-jets Efficiency of light-quark jets 2.5 TeV 0.8 Same set of conditions Efficiency 0.6 0.4 0.2 0 Hit fraction Cut, $(f_1, f_2 \text{ or } f_3) > F$ 2 0

43

Upgrading the simulation

Making sure it works in a more realistic scenario

Pileup – max (f_1, f_2, f_3)

45

Luminous Region

Events do not always occur at (0,0,0) – modify GEANT4 sim to account for this. ATLAS has σ_z = 45mm

New Problem – Jet vectors no longer from (0,0,0), have to be careful when selecting pixels.

Easily resolved by finding the event primary vertex. Once this is done, luminous region vs origin makes no difference to the quality of the tagger.

Upgrading the Tagger

We know it works... Let's make it work better!

How does it do?

Neural Net Wins!!

Extra Slides

49

Energy Deposited in pixels

50