Deep Learning in Particle Physics Research

winnings 4:1

Prof. Dr. Martin Erdmann, RWTH Aachen University, Rutherford Appleton Laboratory 17-Jan-2018

Deep neural network

from computer science to particle physics

Network concepts and applications

Network quality

causality, uncertainty

Deep Learning in industry

humans

Sky

Pole

Building

O. Russakovsky et al, arXiv:1409.0575; K. He, X. Zhang, S. Ren, J. Sunar, arXiv:1512.03385

Classification error rate

WMW Jie Hu, Li Shen (Oxford), Gang Sun, 2017

Spectacular success

Image recognition challenge

0.3 0.28 0.25 0.2 partridge flamingo cock ruffed grouse quail 0.15 150 layers 0.1 16.7% ↓ 23.3% ↓ Humans 5% 0.05-0.036 0.023 0 2010 2011 2012 2013 2015 2016 2017 2014 Persian cat Siamese cat Egyptian cat tabby lynx

ImageNet: 1000 categories, 1.2 million images

Deep learning errors < humans

New paradigm in physics education & work ?

- <u>Up to now</u>: physics laws & mathematics are basis for algorithm development → machine learning with physicist's favorite observables
- New: machines exploit data deeper than physicist's algorithms so far
- We ought to prepare for the fundamental change to include machines in our daily work
- <u>Next</u>: develop **physics motivated network architectures**

Calorimeter: cosmic ray induced air showers

M.E., J. Glombitza, D. Walz, 10.1016/j.astropartphys.2017.10.006

Calorimeter: cosmic ray induced air showers

M.E., J. Glombitza, D. Walz, 10.1016/j.astropartphys.2017.10.006

Calorimeter: cosmic ray induced air showers

Network extracts from training data *optimized intermediate variables* suited for shower direction

120k parameters

8

Deep Learning

Hierarchy of "features" with increasing level of complexity

Image recognition

– Pixel→edge→texton→motif→part→object

Text

- Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

Speech

− Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word

Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

Neural Networks: 2 pages reminder

Neural Network Operations

x multi-dimensional input data
 W, b to be trained

successively apply 2 operations:

activation function: departure from linear system

Neural Network Training

- **Data** set $\{x_i, y_i\}$ i = 1...N
- Define **model** $y_{\rm m}(x; \theta) = Wx + b$ with $\theta = (W, b)$
- Define **objective** function (also called loss/cost) $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_{m}(x_{i}) - y_{i})^{2}$
- Train the model by optimizing the parameters $\hat{\theta} = \arg \min J(\theta)$

Neural Network: automated parameterization of arbitrary function

T. Quast CERN/RWTH Aachen

Fully connected neural network 7 hidden units with 20 nodes each ReLU activation function

Good description (grey) of original function (black) after 10⁵ training steps (if you don't know the original function: don't want to invent a suitable parameterization yourself)

Deep Learning Concepts

from computer science to particle physics

- Slide filter over input volume
- Calculate W x + b
- Apply activation function
- 1 output value at each position
- Translation invariance

Concept 1: *convolutional* networks to analyse image-like data

A. Aurisano et al., JINST 11 (2016) P09001

Electron neutrino identification

P.T. Komiske, E.M. Metodiev, M.D. Schwartz, arXiv:1612.01551

Distinguish quark & gluon jets

M. Stoye, ACAT2017, CMS DSP-2017-005/013/027

CMS jet flavor tagging

Concept 2: *fully connected* networks to analyse fixed length data

M. E., B. Fischer, M. Rieger, JINST 12 (2017) P08020

Jet-parton assignment in ttH events

- Network distribution approximates the best possible reconstruction
- Best results: low level (4-momenta)
 + high level (decay angle,...) variables

A. Butter, G. Kasieczka, T. Plehn, M. Russell, arXiv:1707.08966

Top tagging featuring Minkowski space

Fully connected, Convolutional networks Image: Kaparthy

Concept 3: *recurrent* networks to analyse input data of variable size

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323(9-Oct-1986)533 S. Hochreiter, J. Schmidhuber, Neural Computation 9(1997)1735

Recurrent networks

G. Louppe, K. Cho, C. Becot, K. Cranmer, arXiv:1702.00748

Jet formation & fat jet identification

Physics motivated:

mapping 4*-vectors into network to build* & *process jets* D.H. Ballard, Proc. 6th Nat. conf. on Artificial intelligence, Seattle, Washington, USA, Vol.1 (1987) 279 P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Proc. 25th Int. Conf. on Machine Learning, Helsinki, Finland, (2008) 1096

Concept 4: *autoencoder* networks to extract signal from noisy data

F. Schlüter, M.E., D. Walz, RWTH Aachen

Radio signal from cosmic ray air showers

Noise from data + signal from simulation

Sofia Vallecorsa ACAT 2017

- Counterfeiter: shows police real & fake money
- Police: learns to distinguish & gives feedback
- Counterfeiter: new fake money based on feedback
- Iterate until police is fooled

Concept 5: Adversarial network

Principle of Generative Adversarial Networks

M. Paganinia, L. de Oliveira, B. Nachman, arXiv:1705.02355, PRD in press

Calorimeter simulations: CaloGAN

Generation Method	Hardware	milliseconds/ shower
GEANT4	CPU	1772
CALOGAN	CPU	2.03
	GPU	0.012

- Simulation time faster by 10,000
- Massive parallel computing architecture required (GPU)
- ACAT 2017: Configurable framework planned for fast simulation → Integration in GEANT V

 10^{1}

 10^{0}

Research on network causality, uncertainty, data labels

Causality

Important progress opening black box

B. Lakshminarayanan, A. Pritzel, C. Blundell, arXiv:1612.01474

Predictive uncertainty estimation

Use ensembles of deep neural networks (*deep ensembles*)

Decorrelation

Classification without labels

Summary on deep learning

- Machines exploit physics contained in data deeper than before
- Modeling particle physics into deep network architecture
- Investigations of causality, stability, uncertainties

