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Introduction

I Third Machine Learning in High Energy Physics Summer School
held at University of Reading, 17-23 July 2017

I 60 participants: PhD students and early-career postdocs
I Very broad overview of topics in machine learning
I Indico and Github
I Each day structured into lectures and hands-on sections, with

topical seminars
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https://indico.cern.ch/event/613571/
https://github.com/yandexdataschool/mlhep2017


School
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School Dinner at the Bel and Dragon, Reading
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Machine learning - hype?

Registrations for Neural Information Processing Systems conference (0=early
registration deadline) reference
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https://twitter.com/lxbrun/status/908712249379966977


Topics

I Basics: linear regression and gradient descent
I Decision trees

I Boosting and bagging
I Neural networks

I Convolutional NNs
I Recurrent NNs
I Unsupervised learning
I Deep neural networks
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Tools

I pip, numpy, pandas, matplotlib, seaborn, jupyter, scikit-learn,
keras, theano, tensorflow

I Basically, lots of python plugged together
I No ROOT/TMVA etc
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Challenge

I Kaggle challenge during school
I OPERA emulsion data
I Prize: T-shirt, prestige, give talk at SHiP collaboration meeting
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From CERN to OPERA, overview

Andrey Ustyuzhanin 2

- Goal: find neutrino 
oscillations

- Detector: photo emulsion

- Data taking: 2008-2012

- Results: 5 𝝂µ⟶𝝂 𝜏
observed, 

- 2015 – Nobel prize in 
Physics for discovery of 
neutrino oscillations

- http://operaweb.lngs.infn.it



OPERA detector
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OPERA ECC brick
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Brick structure
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Atomic track 
element: basetrack
- x,
- y,
- z,
- TX,
- TY,
-𝝌2



Given

Data Background: 1 brick, ~ 106 base tracks (signal=0)

MC Signal: simulation of pure EM showers 
(100 events, 102-103 basetracks per shower) (signal=1)

DS_1_train.csv, DS_1_test.csv, 

Origin of the mother-particle is known (x, y, z,
TX, TY, \chi2)

DS_1_electron_train.csv, 
DS_1_electron_test.csv
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Challenge

Develop algorithm that can 

- detect electromagnetic shower basetracks within a brick basetracks
(in test sample we have only description of the track (x, y, z, TX, TZ) 
for every track and set of mother-particles)

- Figure of Merit: ROC AUC

Hosted at: Kaggle, https://inclass.kaggle.com/c/dark-matter-signal-
search-episode-1, requires valid account!

Competition deadline: 19-July-2017 23:59 UTC+0

Prize: memorable prizes + talk on Thursday
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Dark Matter Search-1

4

69 players 
13 external 

~600 submissions 



Dark Matter Search-2

5

32 teams 
34 players 
9 external 

193 submissions 



Basics: linear regression and gradient descent
I Building blocks for neural networks
I Surprisingly powerful
I Extensive literature about different gradient descent methods

(stochastic, momentum)
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https://distill.pub/2017/momentum/


Linear regression and gradient descent for faces:
demo

git clone https://github.com/yandexdataschool/mlhep2017.git
cd mlhep2017
jupyter-notebook day1/seminar2/1.2.1\ Linear\ models\ \(Faces\).ipynb
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Linear regression and gradient descent for faces:
demo

I Using the left half of a face to predict the right half
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Boosted decision trees
I Covered in depth during the

school, but already pervasive
in HEP

I Will not discuss here
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Neural networks: one-slide introduction

I Neuron is a real-valued function: f (xi) = σ(wixi + b)
I x : input, w : weight, σ: activation function (tanh, sigmoid, ReLU)

I Neural network is a network of functions with one or more output
discriminants

I Initialise weights randomly
I Train = changing w and b to minimise e.g. mean squared error

wrt output discriminant
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Neural networks: slightly more detail

Key choices

I Activation function
I Cost function
I Algorithm to minimise

weights and biases wrt
cost function

I Number of layers
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Neural networks in the browser?

Tensorflow playground
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http://playground.tensorflow.org


Pattern recognition using pre-trained neural network

git clone https://github.com/yandexdataschool/mlhep2017.git
cd mlhep2017
jupyter-notebook day5/seminar0/Using_pre_trained_net.ipynb
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Convolutional neural networks
I State of the art for image recognition, if you train it well
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Generative Adversatial Networks

contentcontent

feedbackfeedback

DiscriminatorGenerator

Generate image
(should be plausible)

Tell if image is plausible
(image) → P(fake)



Generative adversarial networks in action

https://blog.openai.com/generative-models/
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https://blog.openai.com/generative-models/


Generative adversarial networks in action

I Direct applications to event generation and detector simulation
discussed in e.g. ACAT talk
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https://indico.cern.ch/event/567550/contributions/2629438/attachments/1510662/2355700/ACAT_GAN.pdf


Attacking with adversarial examples
I Not too relevant for HEP, but interesting for e.g. self-driving cars
I Attacker can craft an image that looks identical to a human but

fools an NN

https://blog.openai.com/adversarial-example-research/, arxiv:1412.6572
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https://blog.openai.com/adversarial-example-research/
https://arxiv.org/pdf/1412.6572.pdf


Machine Learning in the 
LHCb Trigger and Beyond

Mike Williams

Department of Physics & Laboratory for Nuclear Science
Massachusetts Institute of Technology

July 19, 2017
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Figure 3: Evolution of the LHCb trigger system. Real-time calibration and alignment is now
performed between the HLT stages. The FPGA-based hardware stage will be removed in Run 3.

The full post-zero-suppressed data rate cannot be read out by the current electronics, or pro-
cessed by CPUs in real time using existing pattern recognition algorithms (called reconstruction
in HEP). Therefore, a hardware trigger (L0) implements simple algorithms executed on FPGAs
to reduce the data rate to 50 GB/s. The data selected by L0 are sent to a CPU farm (the Event
Filter Farm or EFF) for processing by a software application called the high-level trigger (HLT),
which is divided into two stages. HLT1 partially reconstructs events and selects a subset for further
processing by HLT2, which performs a more complete reconstruction then executes many selection
algorithms to further reduce the rate at which data are ingested for permanent storage.

In Run 1, the combination of limited CPU in the EFF (about 20 000 logical cores), lack of expe-
rience with the data (a new detector), and suboptimal algorithms limited HLT1 to reconstructing
only a low-fidelity subset of the interesting objects in each event. Similarly, HLT2 was not able to
reconstruct all objects, and the lack of data calibrations available in real time meant that o✏ine
reconstruction was necessary to produce the high quality data required for physics analysis. A more
immediate problem at the start of Run 1 in 2010 was that the HLT2 event-classification algorithms
selected more data than could be stored permanently. As the rate at which the LHC delivered
data increased, MW was tasked with redesigning the HLT2 event classification. He produced an
algorithm known as the Topological Trigger (TOPO) that provided excellent physics performance
while meeting the 2010 output bandwidth requirements.

The original criteria used by the TOPO were tuned by hand. For 2011, MW designed an ML
version of the TOPO which promised much better performance (higher signal e�ciency, greater
background rejection). Due to an abundance of caution, both the hand-tuned and ML versions of
the TOPO were used in the 2011 trigger. LHCb had no experience with ML and was concerned
that its use would lead to uncontrollable systematic uncertainties in physics analyses. By the end
of 2011, 60% of LHCb publications were produced using data recorded by the TOPO—and every
analysis chose the ML-based algorithm. By the end of Run 1, innovations like the TOPO made
it possible for LHCb to process proton-proton collisions at twice its design maximum rate, while
recording signal samples at more than twice the anticipated rates and with higher purities.

Run 2 saw two major changes in the LHC operating characteristics: (i) the energy increased
from 8 TeV to 13 TeV, leading to a doubling of the rates at which interesting events are produced,
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HLT1 has 25k physical cores (>50k logical cores) and access to all raw data, 
but cannot afford to do full event reconstruction. Choose to do charged-
particle tracking with a threshold of pT > 0.5 GeV (included PV making).

HLT1
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LHCb builds VELO segments first, then extends these to the next station, then 
beyond the B field to the final station before Kalman filtering all tracks. 
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Fake-Track Killer

ML for fake track probability
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Fake track probability based on TMVA NN (CE estimator), most important features are hit 
multiplicities and partial chi2 information in different tracking subdetectors. Main 
timing cost network evaluation, custom activation function for speed. Extensive use of 
code profiling and autovectorization to optimize the .C output of TMVA for speed.

De Cian et al. 
LHCb-PUB-2017-011

Fake-track-killing neural network, most important features are hit multiplicities 
and track-segment chi2 values from tracking subsystems. 

Run in the trigger on all tracks, so must be super fast. Use of custom 
activation function and highly-optimized C++ implementation (ROOT’s TMVA 
package provides stand-alone C++ code to run the trained algorithm). 

LHCb-PUB-2017-011
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About 70% of the output bandwidth from HLT1 is taken up by inclusive 
selections that seek to efficiently select almost any heavy flavor decay that 
could be of interest.

HLT1 ML Selections
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The majority of the LHCb physics program uses data selected in HLT1 by 
these algorithms, which use MatrixNet (trained by our Yandex friends).

• A one-track algorithm based on the pT 
and IP x2 (track-quality criteria applied 
as pre-selection; there is also a version 
of this that only considers muons).

• A two-track (SV) algorithm based on 
vertex x2, flight distance x2, scalar track 
pT sum, and n(small IP x2) tracks (also 
has a heavy-flavor-like preselection).



About 40% of the final output bandwidth is given to inclusive selections that 
seek to efficiently select almost any b-hadron decay that could be of interest.

HLT2 Topological Trigger
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This algorithm has run since the start of 2011, and has collected the data 
used by ~200 papers! It was re-tuned for Run 2 by Yandex (now based on 
MatrixNet, was a BDT in Run 1).

• An SV algorithm that considers 2, 3, 
and 4-track vertices (seeded by HLT1 
ML selections).

• The ML uses corrected mass, vertex x2, 
scalar track pT sum, flight distance x2, 
pseudorapidty (PV-SV), min(track pT), 
n(small IP tracks), IP x2, n(very b-like 
tracks).

• All features are discretized in the ML for 
stability, robustness, etc. 

V.Gligorov, MW, JINST 8 (2012) P02013.

T.Likhomanenko et al [1510.00572]



Deep Learning Jet Images
Noel Dawe

MLHEP 2017
Reading, UK



Machine Learning Jet Substructure

5

GPU GPU

Apply deep neural networks common in 
computer vision applications to distinguish 
different sources of jets using “jet images”

Flattening the calorimeter
into a 2D image...



Challenge: Boosted hadronic W decays vs QCD jets

6

QCD jet
quark/gluon

W jet

Two subjets with 
separation scaling as

2 mW / pT

Background Signal



Detector Simulation

Simulate calorimeter 
response (ATLAS)

Event Generation

Use HepMC

Creating Jet Image Data

Each stage is a Python generator function that yields a numpy array

Jet images can be produced and used “on-the-fly” or saved to disk for later use

Heavy use of Cython for interfacing NumPy and the above software

See the code: https://github.com/deepjets/deepjets
7

Pythia

Sherpa

Herwig

Delphes FastJet

Jet ImagesJet Clustering

Cluster calorimeter 
towers from Delphes

HDF5 (h5py)



Constructing Jet Images

● Sum transverse energy of calorimeter towers in grid of 0.1 x 0.1 in η-φ space
● Perform translations, rotations and reflections in η-φ space
● Zoom the image to minimise pT dependence
● Crop at 25 x 25 pixels and normalise

14

PYTHIA 8



W Jets QCD Jets
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Images zoomed by:   pT / 2 mW 

da.tensordot(images, w, axes=(0, 0)).compute() / w.sum())

(Images are weighted such that the pT distribution is flat)



Comparing Generators: Network Performance

29

DNN slightly outperforms traditional techniques and
appears to have uncertainties similar in size!



Do try this at home
ssh -X username@hepacc02.pp.rl.ac.uk
singularity shell --nv /usr/local/scontainers/3.2.1/tf\_gpu-1.2.0-cp35-cuda8-cudnn51.img
python3.5

>>> import tensorflow as tf

Run e.g. Tensorflow MNIST tutorial

NVidia Titan X Pascal
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https://www.tensorflow.org/get_started/mnist/beginners
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
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Conclusions

I Excellent open source toolkits and learning resources available
from industry/academia

I Historically, best applications in areas where our problem
domains map well onto image processing

I Promising new applications of e.g. deep neural networks,
generative adversarial networks

I Need to provide convenient standard data sets if we want
machine learning experts from outside HEP to work with us

I State of the art in machine learning is a moving target!
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