Summary of Third Machine Learning in High Energy Physics Summer School

Stewart Martin-Haugh

PPD/RAL Seminar

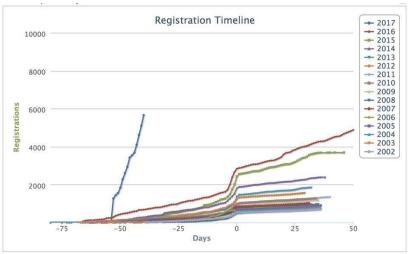
Stewart Martin-Haugh (STFC RAL)

Machine Learning in High Energy Physics

Introduction

- Third Machine Learning in High Energy Physics Summer School held at University of Reading, 17-23 July 2017
- 60 participants: PhD students and early-career postdocs
- Very broad overview of topics in machine learning
- Indico and Github
- Each day structured into lectures and hands-on sections, with topical seminars

School


School Dinner at the Bel and Dragon, Reading

Stewart Martin-Haugh (STFC RAL)

Machine Learning in High Energy Physics

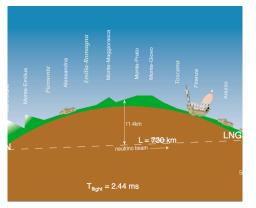
Machine learning - hype?

Registrations for Neural Information Processing Systems conference (0=early registration deadline) reference

Topics

- Basics: linear regression and gradient descent
- Decision trees
 - Boosting and bagging
- Neural networks
 - Convolutional NNs
 - Recurrent NNs
 - Unsupervised learning
 - Deep neural networks

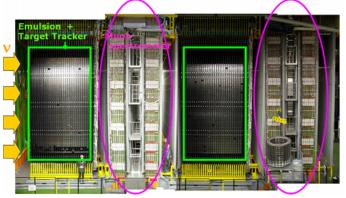
Tools



- pip, numpy, pandas, matplotlib, seaborn, jupyter, scikit-learn, keras, theano, tensorflow
- Basically, lots of python plugged together
- No ROOT/TMVA etc

Challenge

- Kaggle challenge during school
- OPERA emulsion data
- Prize: T-shirt, prestige, give talk at SHiP collaboration meeting


From CERN to OPERA, overview

Andrey Ustyuzhanin

- Goal: find neutrino oscillations
- Detector: photo emulsion
- Data taking: 2008-2012
- Results: $5 \nu_{\mu} \rightarrow \nu_{\tau}$ observed,
- 2015 Nobel prize in Physics for discovery of neutrino oscillations
- http://operaweb.lngs.infn.it

OPERA detector

Andrey Ustyuzhanin

OPERA ECC brick

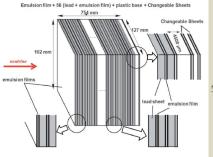
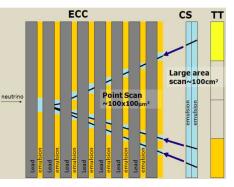
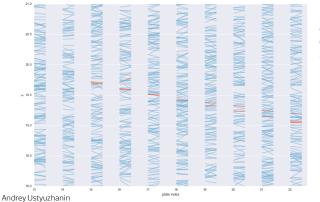




Figure 2.4 - Schematic structure of an ECC brick.

Andrey Ustyuzhanin

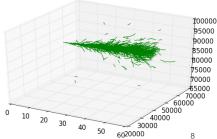
Brick structure

Atomic track element: **basetrack**

7

Given

Data Background: 1 brick, ~ 10⁶ base tracks (signal=0)


MC Signal: simulation of pure EM showers (100 events, 10²-10³ basetracks per shower) (signal=1)

DS_1_train.csv, DS_1_test.csv,

Origin of the mother-particle is known (x, y, z, TX, TY, \chi2)

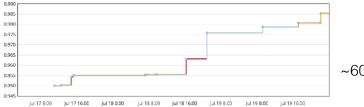
DS_1_electron_train.csv, DS_1_electron_test.csv

Andrey Ustyuzhanin

Challenge

Develop algorithm that can

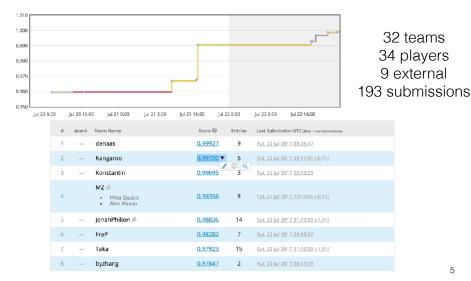
- detect electromagnetic shower basetracks within a brick basetracks (in test sample we have only description of the track (x, y, z, TX, TZ) for every track and set of mother-particles)
- Figure of Merit: ROC AUC


Hosted at: Kaggle, <u>https://inclass.kaggle.com/c/dark-matter-signal-</u> <u>search-episode-1</u>, requires valid account!

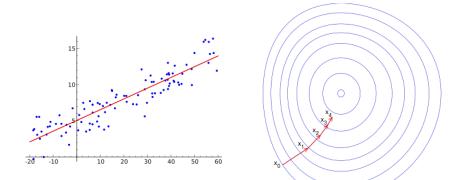
Competition deadline: 19-July-2017 23:59 UTC+0

Prize: memorable prizes + talk on Thursday

Andrey Ustyuzhanin


Dark Matter Search-1

69 players 13 external ~600 submissions


#	∆rank	Team Name	Score 🔞	Entries	Last Submission UTC (Best - Last Submission)
1	_	Benda Xu	0.98556	3	Wed, 19 Jul 2017 22:09:06
2	—	Miha Zgubic	0.98122	23	Wed, 19 Jul 2017 22:29:42
3	—	Konstantin	0.98099	4	Wed, 19 Jul 2017 23:33:12
4	† 1	Georgy Chebanov	0.97063	5	Wed, 19 Jul 2017 02:52:52
5	† 1	Dzianis Sivets	0.96933	7	Wed, 19 Jul 2017 16:54:05 (-3.9h)

Dark Matter Search-2

Basics: linear regression and gradient descent

- Building blocks for neural networks
- Surprisingly powerful
- Extensive literature about different gradient descent methods (stochastic, <u>momentum</u>)

Linear regression and gradient descent for faces: demo

git clone https://github.com/yandexdataschool/mlhep2017.git
cd mlhep2017
jupyter-notebook day1/seminar2/1.2.1\ Linear\ models\ \(Faces\).ipynb

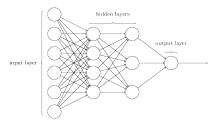
Linear regression and gradient descent for faces: demo

Using the left half of a face to predict the right half

Stewart Martin-Haugh (STFC RAL)

Boosted decision trees

- Covered in depth during the school, but already pervasive in HEP
- Will not discuss here

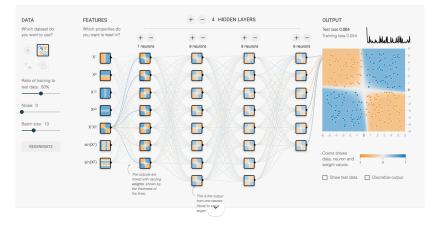


Stewart Martin-Haugh (STFC RAL)

Machine Learning in High Energy Physics

Neural networks: one-slide introduction

- Neuron is a real-valued function: $f(x_i) = \sigma(w_i x_i + b)$
 - x: input, w: weight, σ : activation function (tanh, sigmoid, ReLU)
- Neural network is a network of functions with one or more output discriminants
- Initialise weights randomly
- Train = changing w and b to minimise e.g. mean squared error wrt output discriminant


Neural networks: slightly more detail

Key choices

- Activation function
- Cost function
- Algorithm to minimise weights and biases wrt cost function
- Number of layers

Neural networks in the browser?

Tensorflow playground

Pattern recognition using pre-trained neural network

git clone https://github.com/yandexdataschool/mlhep2017.git
cd mlhep2017
jupyter-notebook day5/seminar0/Using_pre_trained_net.ipynb

Convolutional neural networks

State of the art for image recognition, if you train it well

real: deer: predicted: airplane with score: 1.000

real: horse:

predicted: airplane

with score: 1,000

real: automobile:

predicted: airplane

with score: 1,000

real: cat:

predicted: airplane

with score: 1,000

real: bird: predicted: airplane with score: 1.000

real- deer-

predicted: airplane

with score: 1.000

real: automobile:

predicted: airplane

with score: 1,000

real: automobile: predicted: airplane with score: 1.000

real: horse:

predicted: airplane

with score: 1.000

real: dog:

airplane

score: 1.000

airplane

score: 1.000

real: cat:

real: dog;

predicted: airplane

with score: 1.000

real: bird:

predicted: airplane

with score: 1,000

real: truck;

predicted: airplane

with score: 1,000

real: cat: predicted: airplane with score: 1.000

predicted: airplane with score: 1.000

real: dog:

predicted: airplane

with score: 1.000

with score: 1.000

predicted: airplane

predicted: airplane

with score: 1,000

real: bird:

25/46

real: automobile: predicted: airplane

real: truck: predicted: airplane

real: truck: predicted: airplane

Stewart Martin-Haugh (STFC RAL)

real: cat: predicted: airplane

real: truck: predicted: airplane Machine Learning in High Energy Physics

real: dog predicted: airplane

real: deer: predicted: airplane

predicted: airplane predicted: airplane with score: 1,000 with score: 1,000

real: bird:

real: horse:

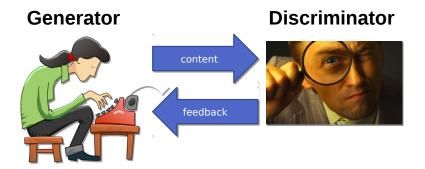
real: deer:

predicted: airplane

with score: 1.000

real: deer:

predicted: airplane with score: 1.000


real: horse:

predicted: airplane

with score: 1.000

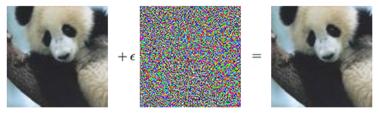
Generative Adversatial Networks

Generate image (should be plausible)

Tell if image is plausible (image) \rightarrow P(fake)

Generative adversarial networks in action

https://blog.openai.com/generative-models/

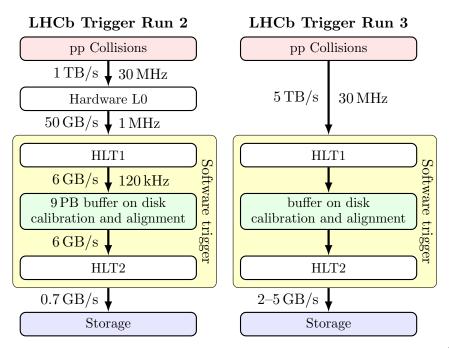

Generative adversarial networks in action

 Direct applications to event generation and detector simulation discussed in e.g. <u>ACAT talk</u>

Attacking with adversarial examples

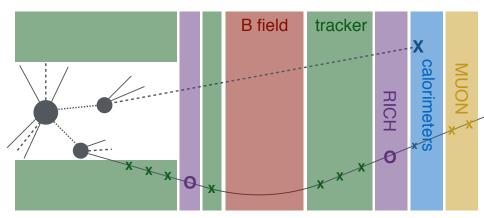
- Not too relevant for HEP, but interesting for e.g. self-driving cars
- Attacker can craft an image that looks identical to a human but fools an NN

"panda" 57.7% confidence


"gibbon" 99.3% confidence

https://blog.openai.com/adversarial-example-research/, arxiv:1412.6572

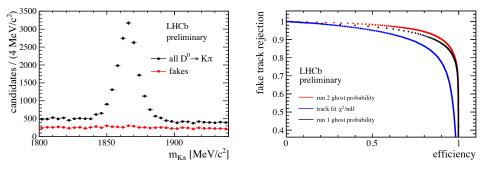
Machine Learning in the LHCb Trigger and Beyond Mike-Williams


Department of Physics & Laboratory for Nuclear Science Massachusetts Institute of Technology

July 19, 2017

HLT1

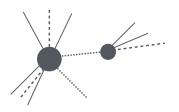
HLT1 has 25k physical cores (>50k logical cores) and access to all raw data, but cannot afford to do full event reconstruction. Choose to do charged-particle tracking with a threshold of $p_T > 0.5$ GeV (included PV making).



LHCb builds VELO segments first, then extends these to the next station, then beyond the B field to the final station before Kalman filtering all tracks.

Fake-Track Killer

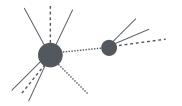
Fake-track-killing neural network, most important features are hit multiplicities and track-segment chi2 values from tracking subsystems.


LHCb-PUB-2017-011

Run in the trigger on all tracks, so must be super fast. Use of custom activation function and highly-optimized C++ implementation (ROOT's TMVA package provides stand-alone C++ code to run the trained algorithm).

HLT1 ML Selections

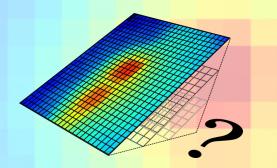
About 70% of the output bandwidth from HLT1 is taken up by inclusive selections that seek to efficiently select almost any heavy flavor decay that could be of interest.



- A one-track algorithm based on the p_T and IP x² (track-quality criteria applied as pre-selection; there is also a version of this that only considers muons).
- A two-track (SV) algorithm based on vertex x², flight distance x², scalar track pT sum, and n(small IP x²) tracks (also has a heavy-flavor-like preselection).

The majority of the LHCb physics program uses data selected in HLT1 by these algorithms, which use MatrixNet (trained by our Yandex friends).

HLT2 Topological Trigger

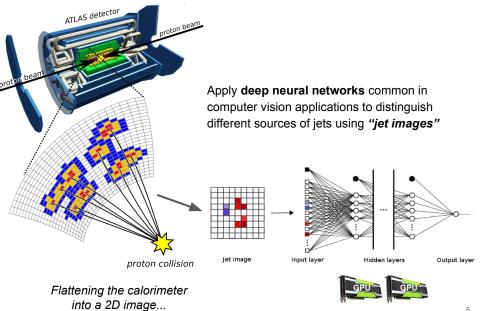

About 40% of the final output bandwidth is given to inclusive selections that seek to efficiently select almost any b-hadron decay that could be of interest.

- An SV algorithm that considers 2, 3, and 4-track vertices (seeded by HLT1 ML selections).
- The ML uses corrected mass, vertex x², scalar track p_T sum, flight distance x², pseudorapidty (PV-SV), min(track p_T), n(small IP tracks), IP x², n(very b-like tracks).
- All features are discretized in the ML for stability, robustness, etc.

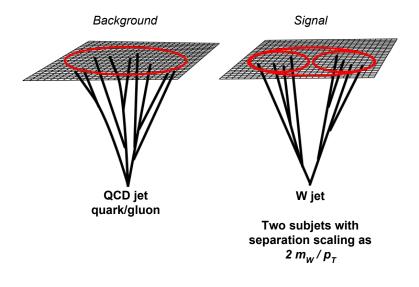
V.Gligorov, MW, JINST 8 (2012) P02013.

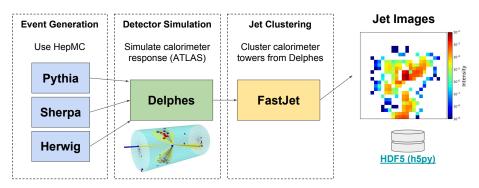
This algorithm has run since the start of 2011, and has collected the data used by ~200 papers! It was re-tuned for Run 2 by Yandex (now based on MatrixNet, was a BDT in Run 1). T.Likhomanenko et al [1510.00572]

Deep Learning Jet Images



Noel Dawe

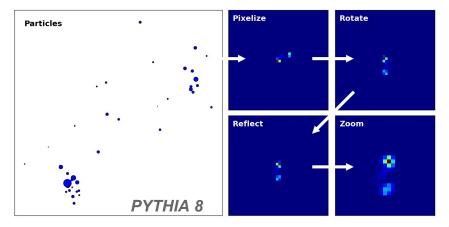

MLHEP 2017 Reading, UK


Machine Learning Jet Substructure

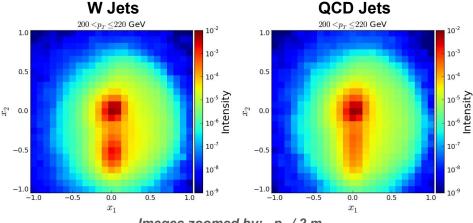
Challenge: Boosted hadronic W decays vs QCD jets

Creating Jet Image Data

Each stage is a Python generator function that yields a numpy array

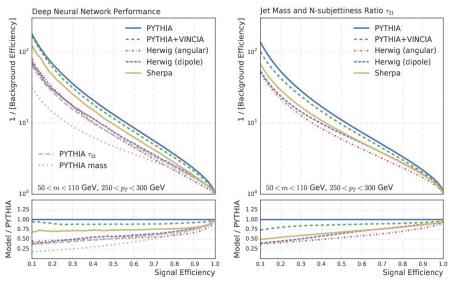

Jet images can be produced and used "on-the-fly" or saved to disk for later use

Heavy use of Cython for interfacing NumPy and the above software


See the code: <u>https://github.com/deepjets/deepjets</u>

Constructing Jet Images

- Sum transverse energy of calorimeter towers in grid of 0.1 x 0.1 in η - ϕ space
- Perform translations, rotations and reflections in η - ϕ space
- Zoom the image to minimise p_{τ} dependence
- Crop at 25 x 25 pixels and normalise



da.tensordot(images, w, axes=(0, 0)).compute() / w.sum()) (Images are weighted such that the p_{τ} distribution is flat)

Images zoomed by: $p_{\tau}/2 m_{w}$

Comparing Generators: Network Performance

DNN slightly outperforms traditional techniques and appears to have uncertainties similar in size!

Do try this at home

ssh -X username@hepacc02.pp.rl.ac.uk singularity shell --nv /usr/local/scontainers/3.2.1/tf_gpu-1.2.0-cp35-cuda8-cudnn51.img python3.5

>>> import tensorflow as tf

Run e.g. Tensorflow MNIST tutorial

NVIDIA PASCAL THE WORLD'S MOST ADVANCED GPU ARCHITECTURE						
Quiforce BTX 10 series graphics cards are powered by Poscial to doubrer up to 2h the performance of previous- generation graphics cards, plus invocative new gaming technologies and breakthrough VB experiences.						
	ADD PASSAGE View of the Second S					
IRRESPONSIBLE AMOUNT OF PERFORMANCE						
We packed the most new horsepower we possibly could late this GPU. Driven by 3861 MIDIA CUDU: cores running at 1.56Hz, TIXIN X packs 11 TELOPs of brute force. Plus it's armod with 12 68 of QDDRSX memory - one of the lastest memory technologies in the world.						
GPU Architecture	NYIDIA TITAN X Pascal					
Frame Buffer	12 08 65X					
Memory Speed	10 Gbps					
Boast Clock	1631 MHz					

NVidia Titan X Pascal

RING THE N FOUNDER & CEO I

GTC Europe: Explore AI and Deep Learning

GPU-accelerated deep learning and artificial intelligence showcased at GTC Europe, Oct. 10-12 in Munich.

I am a visionary. I am a healer. I am a protector. I am a helper. I am a navigator. I am a creator.

I am Al.

I am a visionary. I am a healer. I am a protector. I am a helper. I am a navigator. I am a creator.

I am Al.

Conclusions

- Excellent open source toolkits and learning resources available from industry/academia
- Historically, best applications in areas where our problem domains map well onto image processing
- Promising new applications of e.g. deep neural networks, generative adversarial networks
- Need to provide convenient standard data sets if we want machine learning experts from outside HEP to work with us
- State of the art in machine learning is a moving target!