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Background

• Demand for thick (>100 µm), fully depleted CMOS sensors for high QE

• Near-IR imaging : astronomy, Earth observation, hyperspectral imaging, high 
speed imaging, spectroscopy, microscopy and surveillance.

• Soft X-ray (<10 keV) imaging at synchrotron light sources and XFELs (substrate 
thickness >200 µm)

e2v CIS115
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Goals and Objectives

• Main goal:

– Develop the technology for achieving large depleted depths in pinned photodiode 
CMOS image sensors, leading to high QE in near-IR and soft X-rays

– Make the technology available commercially through Teledyne e2v

• Objectives for this work:

– Simulate and design a prototype, proof of principle sensor

– Manufacture the chip using a commercial foundry

– Characterise the devices

– Publish papers and disseminate the results 

• Funded by UKSA
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The Pinned Photodiode Pixel (PPD, 4T)

• PPD is the preferred CMOS imaging element now

• Charge is collected in a potential well and then 
transferred to the sense node (FD)

• Widely used, excellent performance 

– Noise could be <1 e- RMS

– Correlated double sampling comes naturally

– Small sense node, high responsivity

– Very low dark current

• However: 

– The peak voltage in the PPD (Vpin) is low 1.5V

– Charge transfer is slow (tens or hundreds of ns), 
large pixels can have image lag

– Reverse biasing is the only way to deplete thick 
material, but is problematic

TG

FD

PPD
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Accelerated charge transport in PPD

K. Miyauchi et al., Proc. of SPIE-IS&T/ Vol. 9022 902203-1

• Increased diode doping concentration towards the sense node (FD)

• Higher doping causes higher potential

• Creates potential gradient towards the sense node 

– Electric field is small (500 V/cm), but enough to make a difference
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Performance

• Charge collection of 96% in 10 ns 
due to the large depleted diode

• Charge transfer within PPD 
below 10 ns

• 32 µm pixel used for high speed 
imaging

• 20M frames per second achieved 
in burst mode

• Similar approach is used to 
speed up larger pixels (>100 µm)
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SNR and power dissipation

• PPD is ideal for low-power, high SNR detectors

– Separates the functions of charge collection and charge-to-voltage conversion

– The PPD can be large, helps with prompt charge collection

– The node capacitance can be very small – large voltage change

– MIP signal charge is nearly proportional to detector thickness

• In general :

– SNR ~  𝑸 𝑪 𝒈𝒎

– For constant SNR, the power dissipation is ~  𝑪 𝑸 𝒎 (2  m  4)*

– 40 nW/pixel, 2fF node capacitance in ALPIDE (ALICE ITS) achieved

• Very small capacitance would produce a “digital” signal from a MIP, >300 mV needed

– This would eliminate analogue power!

– Sensors with conversion gain >100 µV/e- exist now (160 mV from 20 µm Si)

*See the papers from Walter Snoeys in NIMA from 2013 and 2014
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Simulated PPD operation

99% of the charge 
transferred in 60ns 

Potential under the PPD

Electron density Electron density
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Reverse biasing PPD pixels

• If reverse bias Vreverse is applied: 

– p+/p/p+ resistor is formed, leakage 
current flows

– This has to be eliminated for a practical 
device

• Pinch-off under the p-wells is needed at all 
times (merged depletion regions) to prevent 
leakage

• The pinch-off condition depends on:

– Doping and junction depth

– Photodiode and p-well sizes

– Bias voltages

– Stored signal charge

P-wells

+Bias

Pinch-off

+Bias +Bias

Diode

–Vreverse

Backside p+ implant

P-type 
epi/bulk Si
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Substrate current suppression

• If the p-wells are deep (as they are 
usually), pinch-off may not occur 

• The p-well should be made to be as 
narrow as possible, but this is not 
sufficient

• Additional n-type implant added:

– Under the p-wells

– Floating

– Called Deep Depletion Extension (DDE)

• Patent pending (owned by Teledyne e2v)

Simplified PPD pixel structure with DDE

Diode

Additional implants

p-well Diode p-well Diode
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Substrate current

• Not a traditional reverse biased diode

• Different leakage mechanism

– Thermionic emission of holes over a potential barrier

– Not a “normal” breakdown

– Eventually leakage occurs, however it should be well above full depletion

𝑰𝑩𝑺𝑩 = 𝑰𝟎 + 𝑨𝑻𝟐𝑺
𝒎𝒉

∗

𝒎𝟎
𝒆𝒙𝒑 −

𝑽𝑷𝑾 + 𝜷𝑽𝑩𝑺𝑩

 𝒌𝑻 𝒒
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Realistic potential profiles @ -5V bias (1)

0.88V
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Realistic potential profiles @ -5V bias (2)
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Realistic potential profiles @ -5V bias (3)
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Potentials under the PPD and the P-wells

• As the backside bias increases:

– The pinning voltage decreases (and the 
full well capacity too)

– Front-to-back hole leakage current 
increases due to thermal excitation 
over the reduced potential barrier

• DDE implant is optimised:

– Low doping – doesn’t achieve pinch-off

– High doping – creates a potential 
pocket

Under PPD

Under P-well and DDE
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Pixel simulations

• 3D models made and simulated 

– Very time consuming, but worth it

– This gave more confidence to 
proceed with manufacture

• Reverse currents simulated for all 24 
different pixel variants:

– 3 implant profiles

– Four 10 µm pixel designs

– Four 5.4 µm pixel designs
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Substrate current – implant energy dependence

No DDE
Shallow DDE
Middle DDE
Deep DDE
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Substrate current – implant size dependence

Baseline
Size 1
Size 2 > Size 1
Size 3 > Size 2
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Potential pockets in depth, 0.5 µm steps

Pockets

Deep DDE
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Backside biasing

• Distance A should be big enough to prevent 
electric breakdown 

– 10 µm is OK up to -50V, from experimental 
data

• The depletion can undercut the conductive path 
from the front side P-well to the back side

– In our design the substrate p-well is 600 µm 
wide : not an issue
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Chip design

• Made on 18 µm 1 kΩ.cm epi, as a proof of principle

– This method applies to any thickness

• Based on a PPD provided by TowerJazz, modified by the 
CEI

• Prototyping 10 µm and 5.4 µm pixel designs, two Vpin

(low=1.5V and high=1.7V)

– 8 pixel arrays of 32 (V)  20 (H) pixels each

• Each array explores different shape and size of the DDE 
implant

– One reference design without DDE (plain PPD pixel)

• Custom ESD protection designed
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Chip design

• Design kept as simple as possible

• Only the bare minimum of 
electronics: 

– Row address decoder selects a 
row from 0..63

– Array decoder selects which 
array to be read out: 0..3

• Each electrical array has 32 rows of 
10 µm pixels and 32 rows of 5.4 µm 
pixels
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Whole sensor cross section

Pixels

Pixel array edge

Backside biasing

• Main difference with the typical PPD CIS – all area outside the pixels is N-type implanted 
(N-well and deep N-well) and reverse biased

• All non-pixel circuitry is on top of deep N-well

• The exception is the backside bias region  

Logic and amplifiers



26 Konstantin Stefanov, 13 September 2017

Chip manufacture

• Submitted for manufacture on 22 February 2016

• 18 custom-processed wafers delivered in July 2016

– 60 chips diced by TowerJazz

– 12 intact wafers for back-thinning

• 18 front side illuminated (FSI) chips wire-bonded 

• Two wafers back-thinned at Teledyne e2v

– 10 backside illuminated (BSI) chips wire-bonded

• All 28 chips worked without defects (100% yield) 

DDE implant Low Vpin (1.5-1.6V) High Vpin (1.7-1.8V)

None --- Wafers 1, 2, 13

Shallow --- Wafers 3, 4, 14

Medium Wafers 7, 8, 16 Wafers 5, 6, 15

Deep Wafers 11, 12, 18 Wafers 9, 10, 17

FSI

BSI
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Experimental setup

• A test board designed and assembled 
at the CEI for the FSI chip variants

• Controlled by LabVIEW with National 
Instruments FPGA card

– 8 ADC, 8 DAC, 16 digital I/O signals

– Works at 500 kpix/s readout, 16-
bit data

• Adapter board from FSI to BSI chips

• A 3-channel source measure unit used 
for the I-V characteristics

– 100 pA resolution
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Reverse biasing

• This shows the reverse current for the whole chip, including the logic and ESD pads

• All pixel variants work

• Reverse bias above -5V with no leakage means that any thickness can be depleted

– VBSB = -4V fully depletes 18 µm thick epi, 1 kΩ.cm

• Qualitative agreement with the simulations

– The measurement is for all 8 variants in parallel, simulation is for one variant only 

Simulation for high VpinMeasurement
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FSI vs BSI chips – reverse voltage

• Epi thickness:

– FSI = 18 µm

– BSI = 12 µm

• The reverse bias drops across the fully 
depleted substrate

• In thinner substrates the potential 
barrier will start decreasing at lower 
reverse bias

– Leakage threshold proportional to 
epi thickness 

– Measured threshold ratio = 1.44, 
expected 18 µm/12 µm = 1.5 
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Electro-optical performance

• Photon transfer curves taken under various conditions

• 10 µm pixel: 

– CVF  80 µV/e- (design = 70 µV/e-) 

– FWC  15 ke- (design = 20 ke-, limited by the sense node)

– Noise (in our system)  8 e- RMS 

• 5.4 µm pixel: 

– CVF  36 µV/e- (design = 33 µV/e-)

– FWC  15 ke- (design = 45 ke-, limited by the sense node and 
off-pixel circuits)

• The new pixels appear identical to the “normal” pixels

• FSI and BSI devices show the same response

• The DDE implant and the reverse bias do not seem to affect the 
electro-optical performance – great!

10 µm pixel

10 µm pixel
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Performance of the 5.4 µm pixel

• Due to constraints in the design the DDE expands under the PPD and the sense 
node (it avoids the sense node in the 10 µm pixel)

• Leads to excessive change sharing, also charge drains away at the array periphery

• However, as the DDE potential is reduced by the reverse bias, the DDE becomes 
less attractive to electrons

– Higher reverse voltage “fixes it”
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Image Lag

• Image lag is <1% in the original 
TowerJazz 10 µm pixel

• Lag remains |<1%| in the new design, 
but changes sign at low signal

– The reason for this is not 
understood

• Reverse bias has little effect on lag –
good
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Performance under strong illumination and X-rays

• A concern for strong illumination:

– PPD potential decreases

– The pinch-off condition may break down

– Rise of leakage current

• This was tested with pulsed light

– No showstoppers

– Large PPD capacitance and inherent anti-blooming help

• X-ray response is OK, readout noise ~5e- at 500 kHz

Mn Kα (5.9keV)

Mn Kβ (6.4keV)

Fe-55 spectrum at -5V reverse bias
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Full depletion in FSI chips

• If there is no reverse current, the device 
should be depleted

• In front-side illuminated chips:

– Bulk dark current should increase with 
the depletion depth

– Once depletion depth = epi thickness the 
dark current should level off

– Expected at VBSB = -4V 

• Data shows the expected behaviour, taken as 
evidence of full depletion

Depleted Neutral

p++ 
substratePPD

Depleted

p++ 
substratePPD

18 µm
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BSI illumination tests

• Two wavelengths:

– 470 nm (absorption length = 0.6 µm)

– 940 nm (absorption length = 54 µm)

• Expectations: 

– 470 nm should be very sensitive to the 
depletion depth, light fully absorbed 
near the bottom of the device, charge 
will diffuse more if not depleted

– 940 nm should not be sensitive 
because the light is absorbed 
throughout the device depth. 

• Pinhole in contact with the sensor, no 
optics

• The size of the imaged spot is used as an 
indication of the depth of depletion

12 µm

10 µm pin 
hole

Light
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BSI illumination tests

• 470 nm (absorption length = 0.6 µm)

– Spot should be very sensitive to 
the depletion depth 

• 940 nm (absorption length = 54 µm)

– Spot should be much less 
sensitive

Depletion edge

Depletion edge

Depletion edge

Depletion edge

470 nm

940 nm

12 µm

12 µm
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Spot size vs reverse bias

• Standard deviation of the spot size 
in Y direction

– 470 nm – clear dependence on 
reverse bias, charge spread is 
reduced due to increasing 
depletion

– 940 nm – little sensitivity on 
reverse bias

• This is a proof that the reverse bias 
works. 

• The change of the charge spreading 
is not spectacular due to the epi 
being only 12 µm thick
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Can this principle be used for particle physics? 

• Already done!

• Very similar design done at CERN by Walter 
Snoeys

– (I was at CERN to show my design in May 
2015)

– TowerJazz had a similar idea at the time

• Here: deep, lightly doped, blanket n-type 

– Under the p-wells

– Connects to the diode for bias (easier to do 
than in PPD)

– Creates a potential barrier

– Reached reverse bias -15V 

• Published in NIM A 871 (2017) 90–96
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Summary and plans

• New fully depleted monolithic PPD CMOS sensor using reverse substrate bias 

– First prototype designed on 18 µm, 1 kΩ.cm epi as a proof of principle

– Can be scaled to much thicker epi/bulk substrates

– Both FSI and BSI devices manufactured

– Patent-pending

• Can be attractive to a large number of applications

– Could offer high QE on a par with thick CCDs and hybrid CMOS

– Low noise, monolithic CMOS design, radiation hard, low power

• Very successful development – objectives met on the first attempt 

• Two papers (one in IEEE Electron Device Letters) published 

– Presented at the International Image Sensor Workshop (May 2017), best 
poster award 

– At least one more paper to be written (invited to publish in Sensors by IISS)

• Next steps – produce a full scale imager and industrialise

– Larger device on 40µm epi

– Small device on bulk higher resistivity silicon – could be >100µm thick
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First peer-reviewed paper published
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IISS Award


