

Searches for light BSM higgs bosons at the LHC

C. H. Shepherd-Themistocleous RAL 6th September 2017

LHC Integrated Luminosities

CMS Integrated Luminosity, pp

Analyses discussed here mainly use 8 TeV data. 13 TeV to come.

Observed Higgs

6th September 2017

Where do we stand with 125 boson

Best fit set of κ ($\kappa_j^2 = \sigma_j / \sigma_j^{SM}$) where BR to BSM decays (B_{BSM}) is allowed to be non-zero.

Combination of ATLAS and CMS data at 7 and 8 TeV

B_{BSM} = 0.34 at 95% CL

Room for new physics to exist

JHEP 08 (2016) 045

Higgs sector in BSM models

- □ Have found 1 Higgs so look for more
- □ SUSY models include extended Higgs sectors.
 - In the MSSM all extra Higgses are heavier than the SM-like H.
 - Heavier Higgses have decay patterns covered by searches used for discovery of existing Higgs.
- Beyond simplest SUSY model (MSSM) Higgs sectors can be expanded.
- Higgses lighter than the discovered Higgs can exist within such models

MSSM: two higgs doublets

$$\widehat{H}_d = \left(\begin{array}{c} \widehat{H}_d^0\\ \widehat{H}_d^- \end{array}\right), \ \widehat{H}_u = \left(\begin{array}{c} \widehat{H}_u^+\\ \widehat{H}_u^0 \end{array}\right)$$

 $\begin{array}{ll} H_d \mbox{ couples to down type quarks and leptons} \\ H_u \mbox{ couples to up type quarks} & M_A, \mbox{ tan}\beta \mbox{ describe} \\ & 5 \mbox{ physical Higgs states h, H, A, H^{+/-}} & \mbox{ parameter space} \end{array}$

NMSSM: two Higgs doublets and new Higgs singlet superfield *S*

- New scalar and pseudoscaler Higgs bosons & new higgsino
- Solves μ-problem

$MSSM \rightarrow NMSSM$

MSSM superpotential

 $\mathcal{W}_{\rm MSSM} = \mu \hat{H}_u \hat{H}_d + \mathcal{W}_{\rm Yukawa}$

The $\boldsymbol{\mu}$ problem

 μ is parameter with dimensions of mass and no a priori link to EWK scale Natural values 0 or M_{Planck}. Require at EWK/SUSY scale.

NMSSM Introduce additional Singlet superfield to superpotential $W_{\text{NMSSM}} = \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{2} \hat{S}^3 + W_{\text{Yukawa}}$

Effective μ term generated by dynamical symmetry breaking

S develops a non-zero vacuum expectation value $\lambda S H_u H_d \longrightarrow \lambda \langle S \rangle H_u H_d = \mu_{eff} H_u H_d$

$$\mu = \lambda \langle S \rangle$$

 $\boldsymbol{\lambda}$ dimensionless - scale invariant

NMSSM Higgs Sector

Higgs sector now has 7 particles

- $h_{1,2,3}$ 3 neutral scalars. SM-like Higgs can be $h_{1,2}$
- a_{1,2} 2 pseudoscalars
- h+/- Charged Higgses

λ		couplings to other Higgs [if $\lambda = 0$, new states decouple]
κ		contributes mass to new Higgs
$egin{array}{c} A_{oldsymbol{\lambda}}\ A_{\kappa} \end{array}$	}	associated soft SuSy-breaking parameters
$\langle S angle$ tan $eta = \langle H_u angle / \langle H_d angle$	}	vacuum-expectation-values

Higgs sector now described by 6 parameters as opposed to 2 (M_A , tan β) in MSSM

Lightest scalar and pseudoscalar can have large singlet component and hence evade exclusion limits from earlier searches (e.g. LEP)

$$W_{\rm NMSSM} \supset \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

$$W_{\mathrm{nMSSM}} \supset \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \xi_F \widehat{S}$$

Z₃ symmetry

Discrete R-symmetry

- No mass term for singlino.
- LSP has large singlino component hence naturally light.
- Relic abundance fixed by annihilation through a₁
- Different phenomenology.

$H_{125} \rightarrow a_1 a_1$ decays

- Lightest Higgs does not have to be observed Higgs
- H → hh (scalar or pseudoscaler) possible in many models
 In general pseudoscaler more potential hence label a₁ in slides.
- Possible a₁ decay modes and BR depend on mass

Note analyses only rely on masses and kinematics not type of higgs

Branching Ratios for a₁ - NMSSM

Mass ranges for analyses $(H \rightarrow a_1 a_1 \text{ only})$

Analysis Characteristics

For large mass differences between H and a₁ decay products can be very boosted

$$m_a < 10 \text{ GeV}$$
 $m_a \sim 10 - 15 \text{ GeV}$ $m_a > 20 \text{ GeV}$ Boosted TechniquesIntermediate region
a challengeStandard techniques

CMS Four tau analyses

Enabling this analysis required a trigger modification to allow non-isolated muons

Background estimation 4τ channel

CMS $2\mu 2\tau$ analysis

Combinations

 $\mu\mu\tau_{e}\tau_{e,}\ \mu\mu\tau_{e}\tau_{\mu,}\ \mu\mu\tau_{e}\tau_{h,}\ \mu\mu\tau_{h}\tau_{h}$

Use $\mu\mu$ for good mass resolution & hence background rejection.

Mass range $20 - 62.5 \text{ GeV} (M_H/2)$

Above 20 GeV little boost.

- \rightarrow All separated by at least ΔR = 0.4
- \rightarrow Use standard hadronic tau reco

Use b-tag veto to remove top bg.

CMS $2\mu 2\tau$ analysis

ATLAS μμττ

Search range 3.5 – 50 GeV. Optimized for < 10 GeV.

 $a \to \mu \mu$ trades trigger efficiency and signal/background for cross section.

One $\tau \rightarrow e$ or μ other $\tau \rightarrow 1-3$ trks. Use to select events only. Overcomes issue of boost at low m_a.

Events / 200 MeV

15

SRμ

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

- Data

Background Model

BR(h→aa) = 10 %

Fit Uncertainty ····· Ζ/γ* Component

······ tł Component

Z/γ* tī

Other

 $CMS H_{125} \rightarrow a_1 a_1 \rightarrow$ 4u

BR to μ large for $2m_{\mu} < m_{a_1} < 2m_{\tau}$

 $\boldsymbol{\mu}$ are very boosted. Isolation criteria take this into account

6th September 2017

CMS $H \rightarrow a_1 a_1 \rightarrow 2b2\mu$

Above 2m_b threshold bb dominant.

2μ used to suppress bg. (4b alone v. large bg) Mass range 25-65 GeV (no boost issues)

Use 4 body mass constraint $|m_{\mu\mu bb} - 125| < 25 \,\text{GeV}$

6th September 2017

- Number of searches for light higgses covering range ~ 0.3 – 60 GeV.
- Bring all of this information together to see how models space constrained for generic 2HDM, NMSSM and nMSSM.

Paper JHEP 1702 (2017) Robin Aggleton (Rutherford & Bristol U. & Southampton U.), Daniele Barducci (Annecy, LAPTH), Nils-Erik Bomark (Adger U. Coll., Kristiansand), Stefano Moretti (Rutherford & Southampton U.), Claire Shepherd-Themistocleous (Rutherford)

- Scan over model parameter spaces to determine total cross section for production and decay chain
- Applying existing experimental constraints
- Compare results of searches to parameter space allowed before the search.

Scans over parameter spaces

A variety of public tools used

NMSSMTools

- Provides mass spectra, couplings BR.
- Will compare particular point in parameter space to previously existing experimental limits using Lilith database.
- Dark matter relic abundance from micrOMEGA.
- 2HDMC (Two Higgs Doublet model calculator)
 - Higgs masses, couplings, BR

HiggsBounds & HiggsSignals

Given input from above will impose experimental constraints

Experimental constraints

Constraints implemented through NMSSMTools, HiggsBounds and HiggsSignals

□ Higgs signal measurements from LHC, LEP, Tevatron

- Measurements on 125 GeV SM-like Higs
- Limits from other searches.

□ Flavour constraints LHC, Belle, BaBar (MultiNest, SuperIso)

 \Box g-2 (muon anomalous magnetic moment) ($\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM}$)

□ Dark Matter relic density abundance. (micrOMEGAs)

Relaxed set of constraints: $\Delta a_{\mu} > 0$, $\Omega_{DM}h^2 < 0.131$ and R(D), R(D^{*}) constraints ignored

Parameter Scan Method

Each scan point is defined by choosing a random value for each model parameter within constrained ranges.

Dependence of observables of interest on model parameter varies considerably.

Example results impose constraints

Examples of $m(h_1)$ dependence on NMSSM params (A_t , κ)

Examples of $m(a_1)$ dependence on NMSSM params

6th September 2017

DM relic abundance wrt effective mu parameter

Scan Parameter Ranges - NMSSM

Parameter	Range	Parameter	Range
λ	0-0.3	M_1	$150 \mathrm{GeV}$
κ	0-0.6	M_2	$300 {\rm GeV}$
aneta	10-30	M_3	$250 - 2500 { m ~GeV}$
$\mu_{ ext{eff}}$	$180220~\mathrm{GeV}$	$M_{U_1} = M_{U_2} = M_{U_3}$	$5002500~\mathrm{GeV}$
A_{λ}	$100{-}4000 { m ~GeV}$	$M_{D_1} = M_{D_2} = M_{D_3}$	$5002500~\mathrm{GeV}$
A_{κ}	-10–4 GeV	$M_{Q_1} = M_{Q_2} = M_{Q_3}$	$800-2500 { m ~GeV}$
A_t	$1500-5000 { m ~GeV}$	$M_{E_{1/2/3}} = M_{L_{1/2/3}}$	$1000 { m ~GeV}$
A_b	$5002500~\mathrm{GeV}$	$A_{e/\mu/ au}$	$2500 { m ~GeV}$

	ε/μ/	
Parameter	Extended range	Reduced range
$m_0 \; ({\rm GeV})$	200-2000	200-2000
$m_{1/2}({ m GeV})$	100 - 2000	100 - 1000
$A_0 (\text{GeV})$	-5000-5000	-3000 - 3000
$\mu_{\rm eff}~({\rm GeV})$	50 - 1000	100-200
aneta	1 - 30	1-6
λ	0.01 – 0.7	0.4 – 0.7
κ	0.01 – 0.7	0.01 – 0.7
$A_{\lambda}({ m GeV})$	200 - 2000	200-1000
$M_p \; (\text{GeV})$	3 - 140	3-140

NMSSM parameters at SUSY scale

GUT inspired NMSSM

scalar masses, trilinear couplings and gaugino masses common values at GUT scale

parameters at EWK scale

Scan Parameter Ranges 2HDM

$h = h_{125}$		$H = h_{125}$	
Parameter	Range	Parameter	Range
m_h	$124128\mathrm{GeV}$	m_h	$3.5124\mathrm{GeV}$
m_H	$1281000\mathrm{GeV}$	m_H	$124128\mathrm{GeV}$
m_A	$3.540\mathrm{GeV}$	m_A	$3.540\mathrm{GeV}$
$m_{H^{\pm}}$	$1281000\mathrm{GeV}$	$m_{H^{\pm}}$	$1281000\mathrm{GeV}$
aneta	0.5 - 50	aneta	0.5 - 50
m_{12}^2	$1010^5~\mathrm{GeV^2}$	m_{12}^2	$1010^5\mathrm{GeV^2}$
$ \sin(eta-lpha) $	0.9 - 1	$ \cos(\beta - \alpha) $	0.9 - 1

2HDM parameter ranges for $h = h_{125}$ and $H = h_{125}$

TYPE Iall SM fermions couple to 1 doubletTYPE IIdown type quarks and leptons up type quarks to other doublet

Scan Parameter Ranges - nMSSM

JHEP01 (2016) 050 study of nMSSM with LHC run 1 constraints

One region compatible with light a_1 mass $m(a_1) \sim 2m(\chi_1^{0})$

Sub-regions

1A small m_0 and $M_{1/2}$ both below 1 TeV

1B small M_{1/2} large m₀

In these region the SM-like Higgs is the h₂

Region 1A		
Parameter	Range	
aneta	6.6–10	
λ	0.33 - 0.53	
μ	$240400\mathrm{GeV}$	
m_0	$01080\mathrm{GeV}$	
$M_{1/2}$	$6301200\mathrm{GeV}$	
A_0	$-170050\mathrm{GeV}$	
A_{λ}	$14006000\mathrm{GeV}$	
ξ_F	$10100\mathrm{GeV^2}$	
ξ_S	$-6\times10^42{\times}10^4\text{GeV}^3$	

Region 1B		
Parameter	Range	
aneta	6-8	
λ	0.49 - 0.52	
μ	$350430\mathrm{GeV}$	
m_0	$40404800\mathrm{GeV}$	
$M_{1/2}$	$280440\mathrm{GeV}$	
A_0	$67007900\mathrm{GeV}$	
A_{λ}	$70007900\mathrm{GeV}$	
ξ_F	$-1.5\times 10^4 1.4{\times}10^4\text{GeV}^2$	
ξ_S	$-1.9\times 10^7 {} 1.6{\times} 10^7{\rm GeV^3}$	

Experimental Limit Relationships

Where measurements made in the same mass range but using different final states one can relate the limits through branching ratio relations

In all models considered all leptons and down-type quarks couple to the same doublet i.e. no tan β dependence.

$$\frac{BR(a_1 \to \tau\tau)}{BR(a_1 \to \mu\mu)} = \frac{m_\tau^2 \beta(m_\tau, m_{a_1})}{m_\mu^2 \beta(m_\mu, m_{a_1})}$$

$$\beta(m_X, m_{a_1}) = \sqrt{1 - \left(\frac{2m_X}{m_{a_1}}\right)^2}$$

$$\frac{BR(a_1 \to \tau\tau)}{BR(a_1 \to b\bar{b})} = \underbrace{m_\tau^2 \beta(m_\tau, m_{a_1})}_{3\bar{m}_b^2 \beta(\bar{m}_b, m_{a_1}) \times (1 + \Delta_{q\bar{q}} + \Delta_a^2)}$$

 $\Delta_{q\bar{q}} = 5.67 \frac{\bar{\alpha}_s}{\pi} + (35.64 - 1.35N_f) \left(\frac{\bar{\alpha}_s}{\pi}\right)^2$ $\Delta_a^2 = \left(\frac{\bar{\alpha}_s}{\pi}\right)^2 \left(3.83 - \ln\frac{m_{a_1}^2}{m_t^2} + \frac{1}{6}\ln^2\frac{\bar{m}_q^2}{m_{a_1}^2}\right)$

Radiative corrections

Cross Section

Total cross section for decay chain

Scan results for $h \rightarrow XX BR$

 h_{125} can be either h_1 or h_2 .

Comparison of constraint codes

Difference between constraints from HiggsSignals + HiggsBounds and NMSSMTools. Different methodologies for applying constraints (and some differences in exp. limits used)

```
H+H uses global \chi^2 NMSSM \chi^2 per channel
```

NMSSM

Beyond bb threshold experimental results are not sensitive to allowed parameter space.

NMSSM

GUT-NMSSM

GUT constrained NMSSM similar to previous plots.

$NMSSM - low masses 4\mu$ results

Significant model parameter exclusion

nMSSM

Very constrained mass range allowed

DM constraint. Lightest neutralino mass constrained to ~ 5 GeV relic abundance fixed via annihilation through pseudoscalar $a_1 m(a_1) \sim 2m(\chi_1^{0})$

 $a_1 \to \chi_1^{\ 0} \, \chi_1^{\ 0} \, \text{dominant decay channel}$

2HDM

Type II 2HDM similar cross sections to NMSSM.

- LHC experiments performed a number of searches for light higgses
- Analyses often specialized for boosted light higgs
- Lack of evidence for such a particle in placing constraints on models beyond the MSSM with enlarged Higgs sectors
- Results for large 13 TeV data samples hopefully available soon.

2HDM

LHC available data

CMS Integrated Luminosity, pp

Analyses discussed here mainly use 8 TeV data. Lots more to come.