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Outline	

Adrian Bevan: QMUL 

!  Overview:		
!  Introduce	the	problem	and	review	the	various	aspects	that	underpin	
the	SVM	concept.	

!  Hard	margin	Support	Vector	Machine	(SVM)	
!  No	mis-classiCication	allowed.	

!  Soft	margin	SVM	
!  MisclassiCication	permitted,	but	incurs	a	penalty.	

!  Kernel	functions	
!  Discuss	kernel	functions	and	their	features	before	moving	to	SVMs.	

!  Examples	
!  Generalisation	
!  Summary	
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Overview	

Adrian Bevan: QMUL 

!  Aim:	classify	events	into	signal	(+1)	and	background	(-1).	

!  Linearly	separable	problems	can	be	treated	using	a	hard	margin	
(absolute	classiCication	with	no	mis-classiCication).	

!  Overlapping	samples	have	some	level	of	mis-classiCication;	use	a	
soft	margin	approach	and	introduce	parameters	to	describe	the	
penalty	of	mis-classifcation:	slack	(ξ)	and	cost	(C).	

!  Use	Kernel	functions	(KF)	to	map	data	from	the	problem	space	
(X)	to	a	feature	space	(F)	and	solve	the	problem	in	this	dual	
space.	

!  Need	to	be	sure	that	we	learn	a	general	solution,	rather	than	
learn	the	Cluctuations	(over	Cit)	to	the	training	data.	
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Part	I	-	SVMs	

Adrian Bevan: QMUL 4 



Widely	used	ML	algorithm:	some	example	Cields	
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!  HEP	problems	are	low	dimensional	simple	use	cases	compared	with	
issues	being	addressed	for	some	of	the	existing	Cields	using	these	
algorithms.	

Machine Learning 
Community/Computer 

Science 

Risk Analysis 

Astrophysics Bioinformatics 

Medicine  
(e.g. predicting  

disease/imaging etc.) 

Speech recognition Handwriting recognition 

Robotics 

HEP 
Finance 



Widely	used	ML	algorithm:	HEP	examples	
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!  Background	suppression	(jets):	
!  F.	Sforza,	V.	Lippi,	Nucl.	Inst.	Meth.	A722,	(2013),	p11-19	(arXiv:1407.0317).	

!  Flavour	Tagging:	
!  P.	Vannerum	et	al.,	Freiburg	EHEP-99-01	(hep-ex/9905027).	

!  Machine	Physics:	
!  Bijan	Sayyar-Rodsari,	C.	Schweiger,	SLAC-R-948.	

!  Review:	
!  A.	Vossen,	Part	of	the	proceedings	of	the	Track	'Computational	Intelligence	for	
HEP	Data	Analysis'	at	iCSC	2006		arXiv:0803.2345.	

!  Top:	
!  A.	Vaiciulis,	Nucl.	Instrum.	Meth.	A502	(2003)	492-494	(hep-ex/0205069).	
!  S.	Ridella	et	al.,	IEEE	Conf.Proc.	(2004)	no.3,	2059-2064.	
!  B.	Whitehouse,	FERMILAB-THESIS-2010-61.	

Studied at LEP/Tevatron/LHC 



Hard	Margin	SVM	

Adrian Bevan: QMUL 

!  Identify	the	support	vectors	(SVs):	these	are	the	points	
nearest	the	decision	boundary.	

!  Use	these	to	deCine	the	hyperplane	that	maximises	the	
margin	(distance)	between	the	optimal	plane	and	the	SVs.	

!  If	we	can	do	this	with	a	SVM	–	we	would	simply	cut	on	the	
data	to	separate	classes	of	event.	
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Hard	Margin	SVM:	Primal	form	
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!  Optimise	the	parameters	for	the	maximal	margin	
hyperplane	via:	

!  such	that	

!  Equivalent	to	solving	the	following	optimisation	problem:	

!  Where:																																		and		

argmin
w,b

1

2
||w||2

yi(w · xi � b) � 1

w =
nX

i=1

↵iyixi b =
1

NSV

nX

i=1

(w · xi � yi)

(yi is the functional margin) 



Hard	Margin	SVM:	KFs	
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!  We	can	introduce	the	use	of	a	KF	to	implicitly	map	from	our	
problem	space	X	to	some	feature	space	F.	

!  DeCine	the	function:	

!  We	don't	need	to	know	the	details	of	the	mapping;	this	is	
the	"kernel	trick".	

K(x, y) = h�(x) · �(y)i

X F 

x1 

x2 

u1 

u3 

u2 

e.g. 

B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines, 
Regularization, Optimization and Beyond. MIT Press, 2002. 



Hard	Margin	SVM:	KFs	

Adrian Bevan: QMUL 10 

!  We	can	introduce	the	use	of	a	KF	to	implicitly	map	from	our	
problem	space	X	to	some	feature	space	F.	

!  DeCine	the	function:	

!  We	don't	need	to	know	the	details	of	the	mapping;	this	is	
the	"kernel	trick".	

K(x, y) = h�(x) · �(y)i

e.g. 

B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines, 
Regularization, Optimization and Beyond. MIT Press, 2002. 

F 2 {�(x)|x 2 X}
x 2 Rn



Hard	Margin	SVM:	Dual	form	

Adrian Bevan: QMUL 11 

!  The	problem	can	be	solved	in	the	dual	space	by	minimising	
the	Lagrangian	for	the	Lagrange	multipliers	αi	:	

!  Such	that:																		and																							.	

!  αi	are	non-zero	for	support	vectors	only.	
!  The	sum	provides	a	constraint	equation	for	optimisation.	

e
L(↵) =

nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjx
T
i xj

=
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i=1

↵i �
1

2

X
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↵i↵jyiyjK(xi, xj).

↵i � 0
nX
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       KF 



Soft	Margin	SVM	
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!  Relax	the	hard	margin	constraint	by	introducing	mis-
classiCication:	
!  Describe	by	slack	(ξi)	and	cost	(C)	parameters.	
!  Alternatively	describe	mis-classiCication	in	terms	of	loss	functions.	

!  These	are	just	ways	to	describe	the	error	rate.	

!  These	are	much	more	useful.	
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ξi = distance between the hyper-plane defined by 
the margin and the ith SV (i.e. now this is a mis-
classified event). 

Cost multiplies the sum of slack parameters in 
optimisation. 

MVA architecture complexity is encoded by the KF. 
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Soft	Margin	SVM:	Dual	form	
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!  The	Lagrangian	to	optimise	simpliCies	when	we	introduce	
the	slack	parameters:	

!  Where	

!  and	as	before	we	constrain:	
nX

i=1

↵iyi = 0

0  ↵i  C

e
L(↵) =

nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(xi, xj)

The optimisation problem in dual 
space is essentially the same for 
the hard and soft margin SVMs. 



Kernel	functions	
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!  The	KF,	K(x,y),	extends	the	use	of	inner	products	on	data	in	
a	vector	space	to	a	transformed	space	where	

!  The	book		
!  by	Nello	Cristianini	and	John	Shawe-Taylor,	called	Support	Vector	
Machines	and	other	kernel-based	learning	methods.	Cambridge	
University	Press,	2000		

				(and	references	therein)	discusses	a	number	of	KFs	and	the	
conditions	required	for	these	to	be	valid	in	the	geometrical	
representation	that	SVMs	are	constructed	from.	

K(x, y) = h�(x) · �(y)i

14 



Kernel	functions:	Radial	Basis	Function	
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!  Commonly	used	KF	that	maps	the	data	from	X	to	F.	

!  Distance	between	two	support	vectors	is	computed	and	
used	as	an	input	to	a	Gaussian	KF.	

!  For	two	data	x	and	y	in	X	space	we	can	compute	K(x,	y)	as	

!  One	tuneable	parameter	in	mapping	from	X	to	F;	given	by	
	 	 	 	Γ=1/σ2.	

K(x, y) = e

�||x�y||2/�2

15 

Previously Implemented in TMVA 



Kernel	functions:	Multi-Gaussian	
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!  Extend	the	RBF	function	to	recognise	that	the	bandwidth	of	
data	in	problem	space	can	differ	for	each	input	dimension;	
i.e.	the	norm	of	the	distance	between	two	support	vectors	
can	result	in	loss	of	information.			

!  Overcome	this	by	introducing	a	Γi=1/σi	for	each	dimension:	

!  Down	side	...	we	increase	the	number	of	parameters	that	
need	to	be	optimally	determined	for	the	map	from	X	to	F.	

K(x, y) =

dim(X)Y

i=1

e

�||xi�yi||2/�2
i

16 

New to TMVA 



Kernel	functions:	Multi-Gaussian	
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!  The	KF		

	allows	for	a	different	σ	for	each	dimension	in	the	problem.	
!  Neglects	correlations	between	input	dimensions	in	data.		Can	be	
accommodated	by	a	further	generalisation:	

!  Here	Σ	is	an	n×n	matrix,	where	n=dim(x).		It	is	the	covariance	
matrix	for	the	problem.	

!  Often	Σ	is	assumed	to	be	diagonal	for	simplicity.	
!  Typically	too	many	parameters	to	optimise	for	the	covariance	matrix.	

K(x, y) =

dim(X)Y

i=1

e

�||xi�yi||2/�2
i

K(x, y) = e

�(x�y)T⌃�1(x�y)

17 

NOT in TMVA: computationally very expensive... 



Polynomial	
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!  There	are	many	different	types	of	polynomial	kernel	
functions	that	one	can	study.	

!  A	common	variant	is	of	the	form:	

!  c	and	d	are	tuneable	parameters.			

!  The	sum	is	over	support	vectors	(i.e.	events	in	the	data	set	
for	a	soft	margin	SVM).	

18 

New to TMVA 



Products	and	sums	
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!  KFs	that	satisfy	Mercer's	conditions*	can	be	combined	to	
make	more	complicated	KFs:	
!  The	sum	of	KFs	is	a	valid	KF.	
!  The	product	of	KFs	is	a	valid	KF.	

* Mercer's conditions require that the Gramm matrix formed from SVs is positive semi-definite.  This is 
a consequence of the geometric interpretation of SVMs given x is real.  Modern extensions of the SVM 
construct allow for complex input spaces, and for example can be based on Clifford algebra to 
accommodate this extension.  

Complex input spaces are of interest for electronic engineering problems. 

N.B. It is conceivable that one could be interested in using these if an amplitude analysis were to be written 
using SVMs to directly extract phase and magnitudes... but that could also be incorporated by mapping the 
complex feature space element into a doublet of reals. 

J. Mercer. Phil.Trans.Roy.Soc.Lond., A209:415, 1909. 

New to TMVA 



Example:	the	checker	board	
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!  Generate	squares	of	different	colour.	
!  Use	SVM	to	classify	the	pattern	into	+1	and	−1	targets.	

!  Hard	margin	SVM	problem;	but	can	solved	for	using	soft	margin	SVM.	
!  Not	easy	to	solve	in	2D	(x,	y)	with	a	linear	discriminant,	but	a	3D	space	of	
(x,	y,	colour)	allows	us	to	separate	the	squares.	

!  Want	to	Cind	a	KF	that	approximates	this	mapping.	

7!

X            F 7!
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Example:	the	checker	board	
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!  Generate	1000	events	in	the	blue	and	red	squares	and	give	
each	event	x	and	y	values.	

!  e.g.	Use	a	multi-Gaussian	kernel	function	with	Γ1=1,	Γ2=2	
and	cost	of	104	(not	optimised)	to	see	what	separation	we	
can	obtain.	

21 

This is the ideal feature space that we 
would like to implicitly map into. 

Because we implicitly do the mapping 
via choice of KF, in practice we don't 
explicitly map into this space; but we 
implicitly map into another space that 
we hope will be approximately 
topologically equivalent. 



Example:	the	checker	board	
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!  		Correctly	classiCied	events										Incorrectly	classiCied	
events	

!  Signal	mis-classiCication	rate	~3.3%.	
!  Background	mis-classiCication	rate	~3.7%.	
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SVM Output
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Example:	the	checker	board	

Adrian Bevan: QMUL 

!  The	confusion	matrix	([in-]correctly	classiCied	events)	for	this	
example	shows	a	high	level	of	correct	classiCication:	

!  This	SVM	does	a	good	job	of	separating	signal	from	background.	
!  An	optimised	output	would	provide	a	better	solution.	
!  BDTs	and	NNs	work	well	with	this	kind	of	problem	as	well.	

S (true) B (true) 

S 945 33 

B 29 967 
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MVA Method:
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Background rejection versus Signal efficiency

ROC curve indicates a high degree 
of signal classification with low 
background (high background 
rejection). 



Optimised	results	
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Trained using the hold out method of cross 
validation (what is normally done in TMVA), 
with optimised hyper-parameters. 



Now	for	a	HEP	example:	H!ττ	
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!  Use	the	Kaggle	data	challenge	sample	of	signal	and	
background	events.	
!  LHC	data	(from	ATLAS).	

!  Packaged	up	in	a	convenient	format	(CSV	Cile).	

!  SufCicient	description	of	variables	provided	for	non-HEP	users	to	
apply	machine	learning	(ML)	techniques	to	HEP	data.	

!  Real	application	to	compare	performance	for	different	KFs	and	
different	MVAs.	

https://www.kaggle.com/c/higgs-boson 



																								inputs	

Adrian Bevan: QMUL 26 

!  Use	10	variables	as	inputs;	20K	events.	
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MMC 
transverse mass between MET and lep 
Visible invariant mass of H 
pT(H) 
R between τhad and lepton  
pT(tot) 
ΣpT 
pT(lepton)/pT(had τ) 
MET ϕ centrality 
METtotal 

This selection of variables is not 
optimised, and is selected in 
order to show a physics example 
for illustrative purposes. 

https://www.kaggle.com/c/higgs-boson 



H!ττ	MVAs	
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!  NOTE:	this	is	an	illustrative	example	–	not	a	fully	optimised	
analysis	of	the	sample;	hyper-parameters	are	optimised.	

Trained using the hold out method of cross 
validation (what is normally done in TMVA), 
with optimised hyper-parameters. 

https://www.kaggle.com/c/higgs-boson 

Spiky as optimisation 
chooses a low 
number of trees. 



H!ττ	performance	
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!  SVM	provides	comparable	performance	to	BDT.	

https://www.kaggle.com/c/higgs-boson 



SVM	options	
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!  Documentation	update	in	progress,	

TJS@IML 



SVM:	Summary	
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!  SVM	algorithm	functionality	improved	in	TMVA.	

!  You	can	download	the	updated	code	from	the	ROOT	git	
repository	to	start	using	this	today.		

!  SVM	performance	comparable	with	BDTs	for	the	Kaggle	
challenge	data.	

!  Other	ways	to	access	SVM	implementations:	
!  TMVA	has	an	R	interface,	so	can	access	libsvm	via	that.	
!  Matlab	has	libsvm	interface.	
!  Mathematica	has	an	SVM	interface.	
!  etc.	



Part	II	-	Generalisation	
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!  Is	our	MVA	Cine	tuned	or	is	it	general?	



What	do	we	mean	by	Cine	tuned?	

Adrian Bevan: QMUL 32 



What	do	we	mean	by	Cine	tuned?	

Adrian Bevan: QMUL 33 



Generalisation	
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!  We	have	an	MVA	–	but	Citting/training	does	not	guarantee	
that	this	is	general.	
!  Over	Citting	(SVMs)	or	over	training	(BDTs/ANNs)	means	that	your	
classiCication/regression	algorithms	are	honed	to	Cluctuations	in	the	
data.	

!  TMVA	uses	a	binned	KS	probability	computed	using	TH1	as	part	of	an	
over	training	check.			

!  Do	not	rely	on	this	quantity	to	decide	if	your	MVA	is	over-trained	
or	not	as	the	TH1::KolmogorovTest(...)	function	does	not	behave	as	
you	would	expect.	 Regularisation is another way to enforce 

generalisation (e.g. see C. M. Bishop. Neural 
networks for pattern recognition. Oxford 
University Press, 1995); not discussed here. 



Cross	validation	
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!  Commonly	used	ML	technique	to	ensure	a	more	robust	
training	for	a	classiCier.	

!  Several	types	used	in	the	literature:	
!  Hold	out	method	(simplest	form	–	used	by	HEP).	
!  k-fold	cross	validation	(CV).	
!  leave	p-out	CV	/	leave	one	out	CV.	
!  progressive	validation.	

!  Common	theme:	
!  Split	data	into	subsets	and	train/validate	on	one	part	of	the	data,	test	
performance	against	the	residual	sample.	

For CV references, see the review: S. Arlot and A. Celisse. A 
survey of cross-validation procedures for model selection. 
Statistics Surveys, 4:4079, 2010. 

For progressive validation: see A. Blum, A. Kalai, and J. Langford. 
Beating the hold-out: bounds for k-fold and progressive cross- 
validation. 99 Proceedings of the twelfth annual conference on 
Computational learning theory, pages 203–208, 1999.  



Ideal	training	process	
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!  Divide	our	data	sample	into	three	parts:	
!  1)	test	sample	–	only	use	this	at	the	very	end	of	the	process;	
!  2)	training	sample;	
!  3)	validation	sample.	

!  Cross	validation	refers	to	the	use	of	training	and	validation	
samples	to	obtain	a	set	of	hyper	parameters	for	an	MVA.	

!  Once	cross	validated,	we	can	then	compare	the	MVA	
performance	/	output	against	the	unseen	test	sample.	

Division of data depends on training method  



Hold	out	method	
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!  Simplest	form	of	cross	validation.	
!  Typically	encountered	in	HEP.	
!  Splits	data	into	training	and	validation	samples.	
!  e.g.	MLP	training;	compare	error	rates	of	training	and	
validation	samples	as	a	function	of	training	epoch.	

Devroye, L. and Wagner, T. J. (1979). Distribution-Free performance Bounds for 
Potential Function Rules. IEEE Transaction in Information Theory, 25(5):601–604. 



k-fold	CV	
1)  Reserve	a	test	sample	from	the	data																														(if	one	wants	to	

validate	generalisation	beyond	the	k-fold	cross	validation	step).	
2)  Randomly	split	the	remaining	data	into	k	sub	samples:	
																																																						.	
3)  Cycle	through	training	k	times,	each	time	leaving	one	sub-sample	out.	

⌦ ! ⌦0 ⇢ ⌦

⌦0 ! ⌦i, i = 1, 2, . . . k

e.g. 5-fold cross validation: train 5 times 
dropping out one sub-sample at a time. 

Use average MVA parameter configuration 
obtained from the k-folds.  

The optimal value of k needs to be 
determined. 

limiting case:  
k=N(data): gives the leave-one-out cross 

validation method. 

validation 

validation 

validation 

validation 

validation 
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Geisser, S. (1975). The predictive sample reuse method with 
applications. J. Amer. Statist. Assoc., 70:320–328. 



BDT	training	
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BDT response
0.5< 0.4< 0.3< 0.2< 0.1< 0 0.1 0.2 0.3

dx / 
(1

/N
) d

N

0
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3

4

5

6 Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.053 (0.007)
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TMVA overtraining check for classifier: BDT

final_BDT_kaggle_best response
0.8< 0.6< 0.4< 0.2< 0 0.2 0.4 0.6

dx / 
(1

/N
) d

N

0
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1

1.5

2

2.5

Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.502 (0.007)
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TMVA overtraining check for classifier: final_BDT_kaggle_best

MVA response
0.8< 0.6< 0.4< 0.2< 0 0.2 0.4 0.6

dx / 
(1

/N
) d

N

0

0.5

1

1.5

2

2.5

3
Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.317 (0.055)
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 / 
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MVA Signal

k-fold cross validated 
BDT response has a 
better level of 
agreement between 
the training and 
validation samples than 
the hold out solution. 

Hold out 5-fold CV  
(best error) 

5-fold CV  
(average) 

See backup slides for notes on 
configuration of TMVA 
example. 

Push request to ROOT git 
repository has been made. 

Work on more elegant 
solution for TMVA in progress. 



SVM	training	
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SVM response
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dx / 
(1

/N
) d

N
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3

4

5

6

7

8
Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability =     0 (0.213)
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TMVA overtraining check for classifier: SVM

final_SVM_kaggle_best response
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dx / 
(1

/N
) d

N

0

1

2

3

4

5

6

7

8

9 Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability =     0 (0.092)
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TMVA overtraining check for classifier: final_SVM_kaggle_best

MVA response
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dx / 
(1

/N
) d

N

0
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2

3

4

5

6

7

8

9
Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability =  0.07 (0.579)
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MVA Signal

Hold-out 5-fold CV best

5-fold CV average

2

k-fold cross validated 
SVM response has a 
better level of 
agreement between 
the training and 
validation samples than 
the hold out solution. 

This example uses an RBF Kernel function 
optimised using the ROC integral as the FOM 

some features 
evident (overfitted) 

some features 
evident (overfitted) 

See backup slides for notes on 
configuration of TMVA 
example. 

Push request to ROOT git 
repository has been made. 

Work on more elegant 
solution for TMVA in progress. 



Summary:	Generalisation	
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!  Optimal	MVA	solution	is	not	necessarily	generalised.	

!  Cross	validation	helps	improve	generalisation.	

!  Does	not	guarantee	a	general	solution	–	that	requires	a	
further	step;	
!  The	quantity	used	by	TMVA	for	the	overtraining	check	is	not	the	right	
quantity	to	use	for	this	purpose.	

!  We	are	looking	into	this	issue	in	more	detail	within	ATLAS.	
!  If	you	can't	wait	for	a	solution	–	take	a	look	at	the	following	papers	on	
the	topic:	

F. Porter: arXiv:0804.0380. 
S. Bityukov: arXiv:1302.2651. 
S.-H. Cha: , Int. J. Math. Models and Meth. in Applied Sciences, Issue 4, Volume 1, 2007, 300-307. 



Overall	summary	
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!  Tools	are	available	for	using	SVMs	with	HEP	data.	
!  Some	are	interfaced	to	ROOT	(e.g.	TMVA,	RTMVA)	
!  TMVA	implementation	has	some	necessary	updates	that	going	into	ROOT	to	
expand	functionality	and	improve	user	friendliness.	

!  SVMs	can	perform	well	with	HEP	data	problems.	
!  You	might	wish	to	explore	what	they	can	do	for	your	analysis.	

!  Generalisation	is	an	issue	that	has	largely	been	overlooked	by	HEP.	
!  Should	split	data	into	test/training/validation	samples	and	perform	cross	
validation	appropriately.	

!  Cross	validation	example	going	into	TMVA	now;	more	elegant	solution	is	under	
development.	

!  We	can	(and	should)	learn	a	lot	from	the	machine	learning	(and	other	
science)	discipline(s)	about	the	use	of	ML	algorithms.	



Backup	
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!  Some	of	our	recent	(public)	talks:	
!  TJS	recently	presented	our	work	at	ACAT.	
!  Recent	updates	at	the	LHC	IML	by	TJS	(Oct),	TJS	(Dec),	TJS	(Feb).	

!  Books:	
!  An	Introduction	to	Support	Vector	Machines	and	other	kernel-based	learning	
methods,	Cristianini	and	Shawe-Taylor	(CUP,	2014).	

!  Statistical	Analysis	Techniques	in	Particle	Physics,	Narsky	and	Porter	(Wiley-Vch,	
2014).	

!  Tools:	
!  Matlab	and	R	have	interfaces	to	SVM	libraries.		libsvm	is	a	popular	
implementation	that	is	described	in	detail	at:	
!  https://www.csie.ntu.edu.tw/~cjlin/libsvm/	

!  ROOT	has	an	interface	to	R	(and	hence	the	R	svm	packages).		It	also	has	an	SVM	
implemented	within	TMVA:	
!  https://root.cern.ch		
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Contributors	to	the	SVM	algorithm	in	TMVA	
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!  Original	implementation	by:	
!  Marcin	Wolter	@	IFJ	PAN,	Krakow,	Poland	
!  Andrzej	Zemla		@	IFJ	PAN,	Krakow,	Poland	

!  Regression	added	by:	
!  Krzysztof	Danielowski	@	IFJ	PAN	&	AGH,	Krakow,	Poland	
!  Kamil	Kraszewski		@	IFJ	PAN	&	UJ,	Krakow,	Poland	
!  Maciej	Kruk	@	IFJ	PAN	&	AGH,	Krakow,	Poland	

!  Latest	updates	(bug	Cix,	optimisation	and	user	friendly	
tweaks,	additional	KFs):	
!  Adrian	Bevan	@	Queen	Mary	University	of	London	
!  Tom	Stevenson	@	Queen	Mary	University	of	London	



Sequential	Minimal	Optimisation	(SMO)	
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!  The	dual	form	of	the	Lagrangian	minimised	for	SVMs	
depends	on	Lagrange	multipliers	(αi)	that	satisfy	a	

				constraint	equation																			as	opposed	to	the	weight	and	
bias	parameters.	

!  Rather	than	take	a	brute	force	approach	to	optimising	for	
the	αi,	SVMs	use	the	constraint	equation	to	select	pairs	of	
SVs	with	the	largest	slack	values	and	change	the	αi's	in	pairs	
to	retain	the	overall	constraint.	

!  This	iterative	process	occurs	for	all	SVs	a	number	of	times;	
so	while	the	number	of	steps	is	larger	than	a	brute	force	
approach,	the	overall	computing	cost	is	smaller.	

46 

nX

i=1

↵iyi = 0



SVM	optimisation	
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!  Able	to	extract	contours	of	Γ	vs	C	for	parameter	
optimisation	for	an	RBF	KF	to	view	correlations.	

Hyper-parameter 
optimisation performed 
using Minuit. 



The	Sigmoid	KF	
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!  This	is	conspicuous	by	its	absence...	

!  The	Sigmoid	KF	is	not	a	valid	Mercer	kernel.	

!  i.e.	the	Gramm	matrix	is	not	guaranteed	to	be	positive	semi-deCinite;	
hence	the	geometric	interpretation	of	the	SVM	can	fail	with	this	KF.	

!  A	number	of	papers	have	reported	sensible	results	with	this	KF.	
!  The	usage	appears	to	be	a	hang	over	from	the	transition	from	using	
Neural	Networks	to	SVMs	(given	that	both	originate	from	
Rosenblatt's	perceptron,	and	the	Sigmoid	function	is	a	widely	used	
activation	function	for	NNs).	

!  We	have	consciously	chosen	not	to	implement	this	as	a	KF	
for	TMVA.	



k-fold	CV	in	TMVA	
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!  An	example	macro	exists	in	TMVA:	crossvalidate.cc!
!  Push	request	was	made	a	few	weeks	ago.	
!  Lorenzo	is	working	on	this	and	it	should	appear	in	the	git	repository	
soon*.	

!  Macro	is	general	and	conCiguration	follows	TMVA	syntax.	

*Along with improvements to TMVA's SVM implementation 

Example is being 
pushed with a checker 
board data sample. 



k-fold	CV	in	TMVA	
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!  CV	steps:	
!  Split	data	into	training/validation	and	test	samples	for	k-folds.	

!  Optimise	the	hyper	parameters	on	k-1	folds;	validate	with	kth	fold.	
!  Repeat	for	all	k.	

!  Compute	error	rate	for	samples	for	each	permutation.	

!  Combine	training	and	validation	samples	for	Cinal	trainings.	
!  Evaluate	performance	for	training	with	"best"	error.	

!  Evaluate	performance	for	the	k-fold	MVAs	on	each	event,	
weighting	the	contributions	by	(1-ε).	

Tendency to be over-trained 

Expect more generalised 
result than best error or 
hold-out method. 



What	value	of	k	should	be	used?	

Adrian Bevan: QMUL 51 

!  This	question	is	problem	dependent.	
!  The	answer	is	problem	dependent!	

!  Determine	E(k);	from	this	distribution	search	for	the	
asymptotic	limit	that	is	sufCiciently	good	to	minimise	the	
error:	 •  A larger value of k will mean a given 

training will have an error rate similar 
to the asymptotic limit of k=Ndata. 

•  As k increases the computational 
expense increases. 

•  Common values of k are 5-10; but 
you should really determine this 
for your given problem. 



CV	in	R	(so	via	the	new	interface)	
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!  R	has	cross	validation	implemented	in	it;	e.g.	libsvm	uses	
this	by	default	(library	e1071).	

				[others	are	also	available]	

!  The	number	of	folds	used	for	CV	is	set	via	tune	control;	
default	in	R	3.2.3	is	10-fold	CV.	

!  e.g.	using	an	SVM	with	the	cats	data	sample	in	R	(a	sample	
of	male	and	female	cats	studied	by	R.	A.	Fisher):	

http://pprc.qmul.ac.uk/~bevan/statistics.html 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 



Leave	one	out	CV	
!  In	the	extreme	limit	of	k-fold	CV	that																															we	obtain	
the	leave	one	out	CV	method.	

!  Requires	N(data)	trainings	of	an	MVA.	
!  Average	the	result	obtained	from	the	N(data)	MVAs	to	determine	
the	output.	

!  Can	provide	useful	results	for	small	samples	of	data	where	
training	and	validation	examples	are	scarce.	

!  However,	can	be	computationally	expensive	for	large	data	
samples.	

!  See:		

!  This	can	be	extended	to	the	leave	p-out	CV	method,	where	one	
successively	omits	p	examples	from	a	training	and	cycles	through	
the	possible	permutations.	

k ! N(data)

Shao, J. (1993). Linear model selection by cross-
validation. J. Amer. Statist. Assoc., 88 (422):486–494. 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B, 36:111–147. With discussion and a reply 
by the authors;  Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 
16:125–127;  Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320–328. 
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