First Antineutrino Oscillation Results from T2K

Asher Kaboth for the T2K Collaboration 10 June 2015

Outline

- Introduction to neutrino physics
- The T2K Experiment
- New results from anti-neutrino running

Why Neutrinos?

- Neutrino mass is a big piece of evidence of beyond-the-Standard-Model physics
- There are still many open questions about neutrino mass
 - Where does it come from? How does it relate to the Standard Model?
 - What does it mean for the early universe? Is it part of the matter-antimatter asymmetry puzzle?
- We need a full understanding of neutrino behavior to address these questions

Neutrinos

- Lightest particle in the standard model: <2.2 eV/c² (3.9x10⁻³³ g)
- Interact only via the weak force and gravity; interaction rates are very, very small
- Each neutrino has a charged partner which determines its "flavor"

Imperial College London

Neutrino Mixing

Neutrinos have two sets of eigenstates: mass (propagation) and flavor (detection)

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

 $\sqrt{1/6}$ $\sqrt{1/3}$ $\sqrt{1/2}$ $\sqrt{2/3}$

PMNS mixing matrix tells us how mass and flavor eigenstates are related

1

Neutrino Oscillation

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Detection also depends on the mass splittings: $\sin^2 \left(\frac{1}{E} \right)$

 $\theta_{23} = 45.8 \pm 3.2^{\circ}$ $\theta_{12} = 33.4 \pm 0.85^{\circ}$ $\theta_{13} = 8.88 \pm 0.39^{\circ}$

PDG 2014

Imperial College

Iondon

 $\Delta m^{2}_{21} = 7.53 \pm 0.18 \times 10^{-5} \text{ eV}^{2}$ $|\Delta m^{2}_{32}| = 2.44 \pm 0.06 \times 10^{-3} \text{ eV}^{2}$ $\delta_{CP} = [-\pi - 0.14\pi] \text{ and } [0.87\pi - \pi]$ (90% interval)

T2K Measurements

Abe, K., et al. Physical Review D 91.7 (2015): 072010.

First measurement of flavor appearance with 28 v_e candidates Independent measurement of θ_{13}

> Parameters measured by T2K θ₂₃=45.8±3.2° $\theta_{12}=33.4\pm0.85^{\circ}$ θ₁₃=8.88±0.39°

Imperial College London

World-leading measurement of θ_{23} Significant measurement of Δm^{2}_{32}

 $\Delta m_{21}^2 = 7.53 \pm 0.18 \times 10^{-5} \text{ eV}^2$ $|\Delta m^2_{32}| = 2.44 \pm 0.06 \times 10^{-3} \text{ eV}^2$ $\delta_{CP} = [-\pi - 0.14\pi]$ and $[0.87\pi - \pi]$ (90% interval) 9

$\overline{\nu}_{\mu}$ Disappearance

- Physics is interesting: investigate if neutrinos and antineutrinos behave differently:
 - CPT theorem implies that neutrino and antineutrino disappearance probability should be the same
 - Nonstandard matter interactions as the neutrinos/ antineutrinos pass through the Earth could change disappearance probability
- Practical: understand the antineutrino beam before doing harder appearance measurement that depends on disappearance measurement

1200yearold 3 temple

olo emple J-PARC Facility (KEK/JAEA)

Near

Detector

View to North

Photo: January 2008

Linac

Neutrino Beam to Kamioka

Design Intensity 750kW

nchrotron

V

pacific Ocean

Construction 2001~2009

J-PARC neutrino beamline overview

Beam Stability

Use INGRID onaxis detector to measure beam stability

Beam rate and direction has been very stable in both neutrino and anti-neutrino modes

Imperial College London

Beam Uncertainties

Hadronic Uncertainties

21

- This analysis has seen significant improvement in hadronic uncertainties through new data
 - NA61/SHINE (at CERN) measures the distributions of the pions and kaons that are produced from 30 GeV protons on a graphite target
 - T2K uses this information to tune the beam simulation
- The new data has both improved the beam prediction and reduced the uncertainty by ~4% in the beam peak

v-N Cross Section Model

Imperial College London

- Use CCQE-like data from the MiniBooNE and MINERVA experiments to select a cross section model and tune parameters
- External data is somewhat in tension, so errors are inflated to account for that tension **Imperial College**

London

- Three samples allow sensitivity to different beam energies and cross section interaction modes
- High statistics in neutrino mode provide strong constraints
- CC0π and CC Other samples are underestimated by model; CC1π⁺ is overestimated

Beam

v_µ CC-NTrack (wrong sign)

ND280 V-mode Samples

Samples are still statistically small compared to v-mode

• Important look into what ND280 will do with $\overline{\nu}$ data

Imperial College London

Near Detector Analysis

Data is binned in muon candidate momentum and angle with respect to the incoming neutrino beam Maximize a likelihood which is the product of a Poisson term comparing the predicted spectrum to the data and a term incorporating the systematics

Near Detector Results

- Flux parameters are generally increased
- Some cross section parameters—especially the carbon multinucleon parameter—are changed significantly from prior values

CCOTT Samples

Before analysis

After analysis

- Clear that data is in better agreement after the analysis
- Multinucleon component of distribution is noticeably increased

Super-Kamiokande

- 50 kton (22.5 kton fiducial volume) water Cherenkov detector
- ~11,000 20" PMT for inner detector (ID) (40% photo coverage)
- ~2,000 outward facing 8" PMT for outer detector (OD): veto cosmics, radioactivity, exiting events

SK Particle Identification

Beam Timing at SK

- Fully contained events in the SK fiducial volume appear in time with the T2K beam
- Both v-mode and v̄mode events have good beam timing

Predicted SK Spectra

- 1. Fully contained within the fiducial volume of SK
- 2. Have one and only one reconstructed ring
- 3. Have μ -like PID
- 4. Have muon momentum >200 MeV/c
- 5. Have one or fewer decay electron

 Predict the expected spectrum at SK using neutrino-mode oscillation parameters

- Dominated by ⊽ CCQE events, but many other contributions—this is why cross section model is so important
- Predict 19.9 events with oscillation and 59.8 without oscillation

Total Systematic Uncertainties

Flux and cross section uncertainties are dominated by uncertainties on the difference between interactions on C and O

	Systematic		Without ND	With ND measurement	
[Flux and Cross Section	Common to ND280/SK	9.2%	3.4%	
		SK only	10%		
		All	13.0%	10.0%	
	Final State Interaction/Secondary Interaction		2.1%		
	SK Detector		3.8%		
	То	Total		11.6%	
Imperia London	College 40				

Analysis Method

 $\mathcal{L} = \mathcal{L}_{Poisson} \times \mathcal{L}_{Syst}$

Maximize a likelihood which is the product of a Poisson term comparing the predicted spectrum to the data and a term incorporating the systematics

Data is binned in reconstructed neutrino energy

Fix all oscillation parameters except $\sin^2\overline{\theta}_{23}$ and $\Delta \overline{m}^2_{32}$ using T2K neutrino data and PDG 2014

$sin^2\theta_{23}$	0.527	$sin^2\overline{\theta}_{23}$	0-1
Δm^2_{32}	$2.51 \times 10^{-3} eV^2$	$\Delta \overline{m}^2_{32}$	0-0.02 eV ²
$sin^2\theta_{13}$	0.0248	$sin^2\overline{\theta}_{13}$	0.0248
$sin^2\theta_{12}$	0.304	$sin^2\overline{\theta}_{12}$	0.304
Δm^2_{21}	$7.53 \times 10^{-5} eV^2$	$\Delta \overline{m}^2_{21}$	$7.53 \times 10^{-5} eV^2$
δ	–1.55 rad	δ	–1.55 rad

Imperial College London

Results!

Best Fit Spectrum

- Data show clear
 evidence of oscillation
- Clear, visible
 oscillation "dip" in the
 data

 $\sin^2 2\theta_{23} = 1.0$

 $\sin^2 2\theta_{13} = 0.1$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

3

2

 E_{ν} (GeV)

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$

0.5

Imperial College

London

Oscillation Parameters

Impact of Systematic Uncertainty

- Fitting without including systematic uncertainties produces nearly identical contours
- This analysis is statistics dominated

Imperial College London

Comparison to MINOS

 T2K contours are smaller in sin²θ₂₃, though MINOS saw a non-maximal best fit point

Results are completely compatible

P. Adamson et al., Phys. Rev. Lett. 110 (2013) 25, 251801

Future Work

- Anti-neutrino running is ongoing— POT at the end of May is 4.0x10²⁰, nearly twice as large as this dataset
- Anti-neutrino analysis of Ve appearance is underway
- Expect to release these results in late summer

Conclusions

- T2K has performed its first analysis with antineutrino data
- In a study of muon anti-neutrino disappearance, T2K observes 17 events in the far detector and has set a world-leading limit on the θ₂₃ parameter –but we are limited by statistics!
- T2K continues to take data and more anti-neutrino results are coming soon!
- Thank you to RAL for hosting Emerald, which was used for most of the computing for this analysis!

Supplementary

