
The Alpha Magnetic Spectrometer (AMS-02)
on the International Space Station

Henning Gast
RWTH Aachen



Questions to AMS-02:
Are there galaxies made of anti-matter in the Universe?
What is the nature of Dark Matter?
How do cosmic rays propagate in the Galaxy?
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Overview

 Physics with AMS-02
 The AMS-02 detector
 Recent new experimental data from AMS-02
 Model-independent interpretation of AMS data
 Dark Matter models in the light of AMS data



The search for antimatter in the Universe

The Universe was created in the Big Bang.

AMS on the ISS

After the Big Bang, there must have 
been equal amounts of matter and 
anti-matter.
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Kepler's SNR

Atomic nuclei are 
accelerated in 
supernovae to very 
high energies and 
become cosmic rays.

Are there anti-galaxies 
in the Universe?

Can we observe an 
anti-carbon nucleus 
from a far distant 
supernova?



Dark matter 
particles

standard model 
particles

particle 
detector

Products of Dark Matter annihilations 
get injected into cosmic-ray sea:

χ

χ

Dark Matter annihilation

most promising channels: e+, p, D, (He), (and photons)
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Relic Dark Matter particles

Bergström

relic density ↔ annihilation cross section

freeze-out

Freeze-out in the early Universe

Ωχ h
2≈0.1

⟨σ v ⟩≈3⋅10−26cm3 s−1

Natural scale for cross section:



Cosmic ray physics in a nutshell
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Cosmic rays: Spectrum and composition
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The positron anomaly

Turner & Wilczek, PRD 42 (1990) 1001 Cirelli (2012), 1202.1454v2

calculated 
background 
of secondary 
positrons
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Scientific American, May 2011
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PAMELA vs AMS-02

GF: 21.5 cm2 sr

electromagnetic 
calorimeter

Ring-
Imaging
Cherenkov 
counter

tracker 
planes

Transition 
Radiation 
Detector

time-of-flight 
system

magnet

Anti-
Coincidence 
Counter

GF: 250 – 3500 cm2 sr, depending on physics 
analysis
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Endeavour approaches the International Space Station
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AMS installed on the ISS 
Truss and taking data

May 19, 2011
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AMS-02 overview
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Particles and nuclei are defined 

by their 
charge (Z) and energy (E ~ P)

 Z, P are measured independently by
the Tracker, RICH, TOF and ECAL

 Magnet
±Z
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AMS-02 particle identification

 Particle ID requires 
complex algorithms for 
each subdetector.

 Combine information 
from all subdetectors.

 Example: proton rejection 
1:1,000,000

 For every year of AMS 
flight:

 20 TB raw data
 160 TB reconstructed 

event data
 Data handling non-

trivial!
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AMS-02 Transition Radiation Detector

220 cm



AMS-02 Transition Radiation Detector

Misidentifies only 1 in 10000 protons as a positron.
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AMS-02 performance: TRD spectra
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TRD electron-proton separation

electrons protons



Thermal variables:
• ISS Radiator positions
• ISS attitude changes (primarily for 

visiting vehicles)
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TRD proton rejection
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e

Lead foil
(1mm)

Fibers
(1mm)

Calorimeter (ECAL)
A precision, 3-D measurement of the directions and 

energies of light rays and electrons 
up to 1 TeV

50,000 fibers, mm 
distributed uniformly Inside 600 kg of lead

Total 17 X0

e
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ECAL: proton rejection and energy resolution
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1 out of 60,000,000,000 events:    

TRD: 
identifies 
electron

Tracker and Magnet: 
measure charge sign
and momentum

ECAL: 
identifies electron and measures 
its energy

side 
view

front 
view

1.03 TeV electron



AMS Computing on JUROPA at Julich Supercomputing Centre

Production of reconstructed AMS-02 event files for first AMS-02 publication 
performed on JUROPA supercomputer within 12 days of time.



1) Measurement of the positron 
fraction in primary cosmic rays of 
0.5-350 GeV.
Selected for a Viewpoint in Physics 
and an Editors’ Suggestion.
Phys. Rev. Lett. 110 (2013) 141102

2) Measurement of the positron 
fraction in primary cosmic rays of 
0.5-500 GeV.
Selected for an Editors’ Suggestion.
Phys. Rev. Lett., 113 (2014) 121101

3) Electron and positron fluxes in 
primary cosmic rays,
up to 700 GeV (e-) and
up to 500 GeV (e+).
Selected for an Editors’ Suggestion.
Phys. Rev. Lett., 113 (2014) 121102

4) Precision Measurement of the
e+ + e- Flux in Primary Cosmic 
Rays from 0.5 GeV to 1 TeV with 
the Alpha Magnetic Spectrometer 
on the International Space Station.
Phys. Rev. Lett., 113 (2014) 221102

First results from AMS
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Example of positron selection

83.2 – 100 GeV
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Positron fraction in primary cosmic rays measured by AMS

Above ~200 GeV, positron fraction no longer exhibits increase 
with energy. No sharp structures are observed.
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Positron fraction slope seen by AMS-02
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Search for dipole anisotropy in positrons

Positrons at high energies

 Data are consistent with isotropic distribution of arrival directions.
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Limit on dipole anisotropy

 Data are consistent with isotropic distribution of arrival directions.

AMS-02:
 < 0.03 at the 95% confidence level.
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A new era of precision: e± fluxes from AMS
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A new era of precision: e± fluxes from AMS
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Spectral index in sliding windows

Φ(E)∝Eγ

Below 10 GeV: solar modulation.
Neither spectrum described by single power law.
20 to 200 GeV: positron flux significantly harder than electron flux
Differing behavior of the spectral indices vs energy.
Above ~200 GeV: positron flux shows tendency to soften.



Change of spectral index for positron flux and electron flux
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Generic model fits

Simultaneous fit to electron and positron above 15 GeV, positron fraction below.
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AMS measurement of (e++e-) flux 

e+ + e-
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Dark Matter models in the light of AMS data
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Dark matter in the light of AMS-02 results

 Dark matter annihilating directly to e+ e– or μ+ µ–  no longer capable of describing 
observed rise in positron fraction.

 Annihilation via light intermediate states into muons and pions consistent with 
data, for DM masses of 1.5 – 3 TeV, <σv> as high as (6 – 23) x 10-24 cm3/s

 Describing the Fermi all-electron spectrum at the same time requires spectral 
break in cosmic-ray electrons.

Many models explain rise in positron fraction by Dark Matter 
annihilation, e.g.: Cholis and Hooper, PRD 88 (2013) 023013
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Astrophysical sources for positrons

Positrons inevitably produced in magnetosphere of pulsars and 
accelerated in pulsar wind nebula.
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Pulsar models also explain rising positron fraction!

 Sum of known pulsars, assuming
 exponentially cutoff power law spectra
 10-20% of spin-down power converted to CR acceleration
 break in CR electron spectrum
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Pulsar models predict e± anisotropy!
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More ideas

 Supernova remnants (radioactive nuclei from supernova ejecta) as positron 
sources (Erlykin & Wolfendale)

 Acceleration of secondary e± produced through pp interactions inside the 
primary sources (Ahlers et al.)

 Propagation effects (Blum et al.)
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Full astrophysical model

 Contributions from all known astrophysical sources
 Primary electrons from SNRs
 Electrons and positrons from PWNe
 Secondary positrons and electrons from proton and helium
 No contribution from Dark Matter required.

Di Mauro et al., 
JCAP04 (2014) 006
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Dark matter in the light of AMS-02 results

 Try to fit lepton spectra from annihilating dark matter to AMS positron fraction:

A different approach: Search for Dark Matter signal on top of 
astrophysical source and secondary background,
 e.g.: Bergström et al., PRL 111 (2013) 171101
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Dark matter in the light of AMS-02 results

 Strong limits on Dark Matter annihilation derived in this case.

Bergström et al., PRL 
111 (2013) 171101
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What could we learn from a sharply falling positron fraction?
Delahaye et al.,
ApJ 794 (2014) 168 Mock data above 350 GeV

 Surprising conclusion: sharp cutoff not necessarily smoking gun for dark 
matter.

dark matter

pulsar
(spectral index)
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Conclusions

 AMS-02: Field of charged cosmic rays in the GeV regime now data-driven. 
 first experimental observation of positron fraction maximum
 no sharp structures observed in positron fraction
 behaviour of e- and e+ fundamentally different in magnitude and energy dependence

 Theoretical refinements needed:
 solar modulation
 propagation models

 Important input from AMS-02 to come:
 primary spectra (protons, Helium) 
 B/C
 antiprotons
 search for positron anisotropy

 Dark Matter models offer viable explanation for observations of charged cosmic 
rays. But astrophysical explanation is equally good or better!



The Cosmos is the Ultimate Laboratory.
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