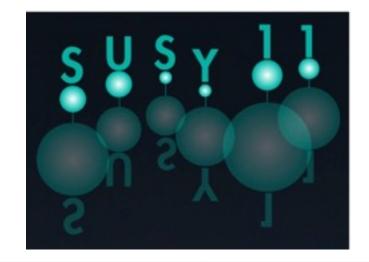
University of Sussex

Search for stops and sbottoms at the LHC - status and prospects


Iacopo Vivarelli University of Sussex Seminar - RAL - March 2015

Supersymmetry (SUSY)

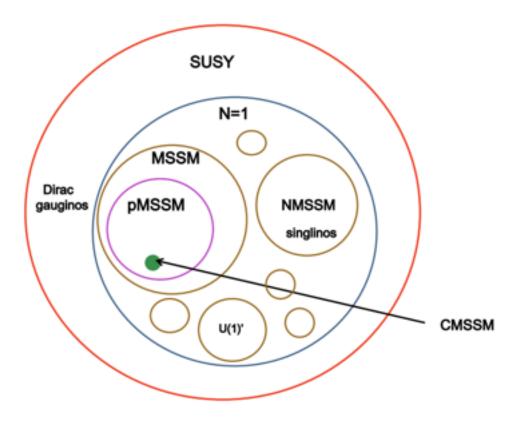
University of Sussex

- SUSY is a symmetry that relates bosons and fermions
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners

SUSY is not an exact symmetry

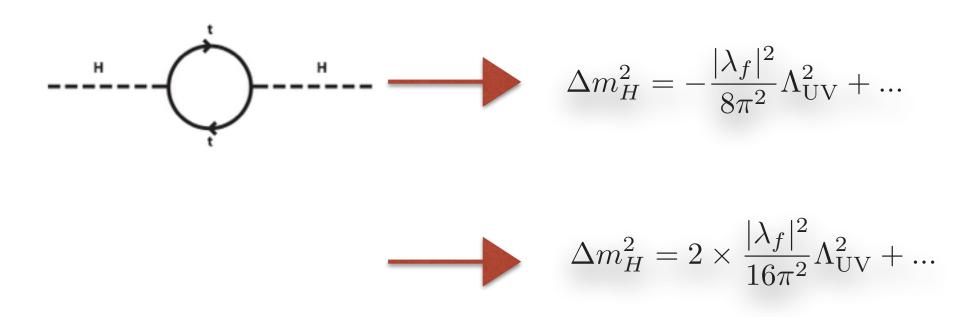
Sparticle masses ≠ particle

masses


 $\begin{array}{l} \text{R-parity} = (-1)^{3(\text{B-L}) + 2s} \\ \text{-1 for sparticles} \\ 1 \text{ for particles} \end{array}$

$$W \ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \mu_iL_iH_u$$

Lepton and baryon number violation allowed → proton decay If R-parity conserved, the Lightest Supersymmetric Particle (LSP) is stable



- III-posed question:
 - Supersymmetry **is a symmetry**. We can exclude supersymmetric models, not supersymmetry.

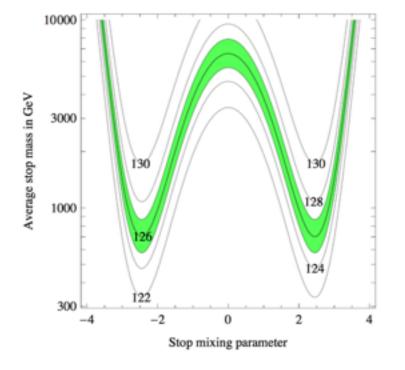
In general, little to no indication on sparticle masses

Higgs mass has a quadratic dependency from physics at a higher scale

With SUSY, quadratic effects are cancelled exactly

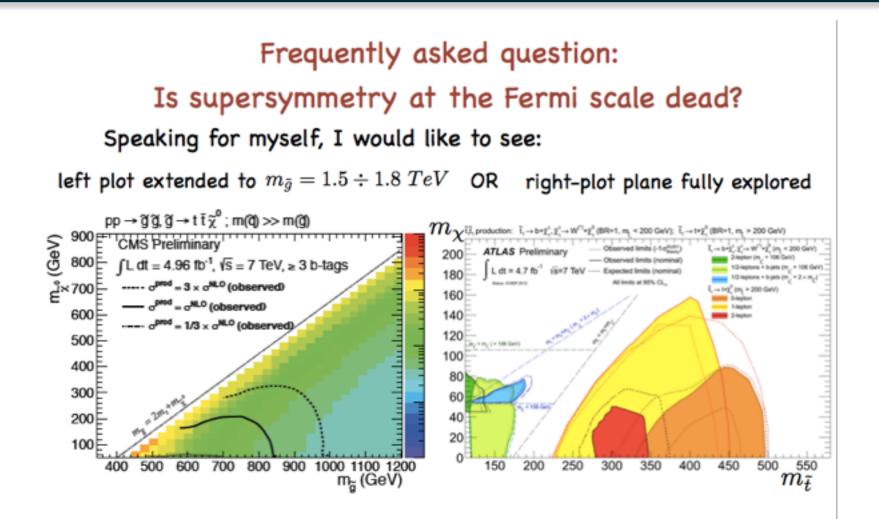
Higgs boson mass

University of Sussex


The Higgs boson mass in MSSM

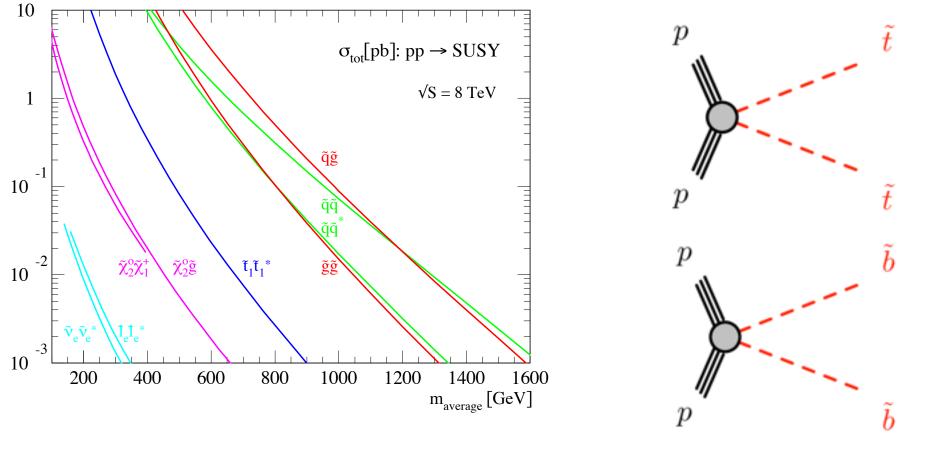
$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log\left(\frac{m_S^2}{m_t^2}\right) + X_t^2 \left(1 - \frac{X_t^2}{12}\right) \right] + \cdots$$

ms is the product of the two stop masses


Xt is the mixing between the two stop states

$$\mathbf{m}_{\tilde{\mathbf{t}}}^{2} = \begin{pmatrix} m_{Q_{3}}^{2} + m_{t}^{2} + \Delta_{\tilde{u}_{L}} & v(a_{t}^{*}\sin\beta - \mu y_{t}\cos\beta) \\ v(a_{t}\sin\beta - \mu^{*}y_{t}\cos\beta) & m_{\overline{u}_{3}}^{2} + m_{t}^{2} + \Delta_{\tilde{u}_{R}} \end{pmatrix}$$
$$\mathbf{m}_{\tilde{\mathbf{b}}}^{2} = \begin{pmatrix} m_{Q_{3}}^{2} + \Delta_{\tilde{d}_{L}} & v(a_{b}^{*}\cos\beta - \mu y_{b}\sin\beta) \\ v(a_{b}\cos\beta - \mu^{*}y_{b}\sin\beta) & m_{\overline{d}_{3}}^{2} + \Delta_{\tilde{d}_{R}} \end{pmatrix}$$

From arXiv:1212.6847

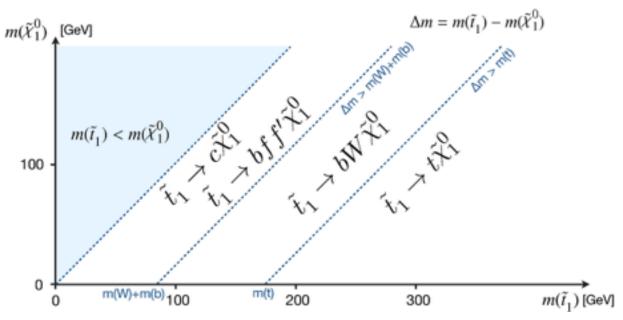


R. Barbieri - ICHEP2012 physics highlights - Melbourne 2012

Production cross sections....

University of Sussex

Taken from <u>http://www.thphys.uni-heidelberg.de/~plehn/</u> index.php?show=prospino&visible=tools

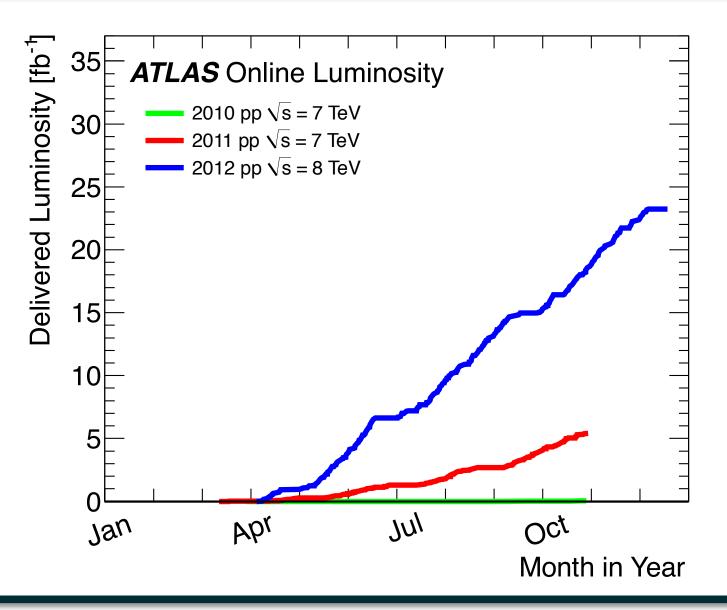


oursulty of Si

...and decays

In the simplest case (only stop and LSP have small mass)

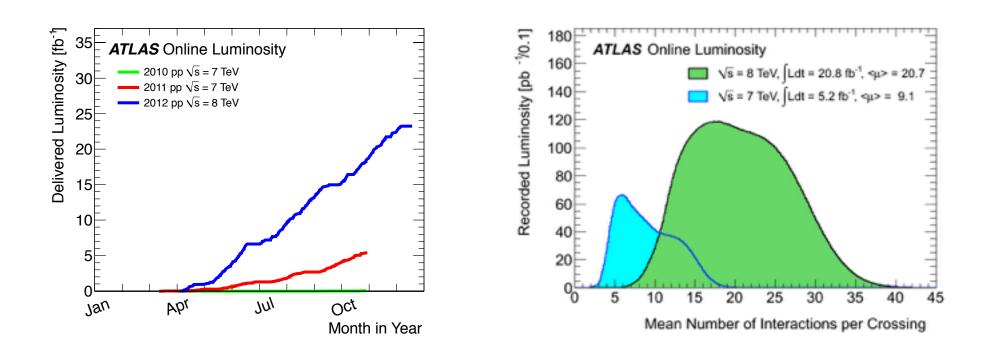
BUT: Good reasons to expect lightest chargino **relatively light**: increasingly complex phenomenology

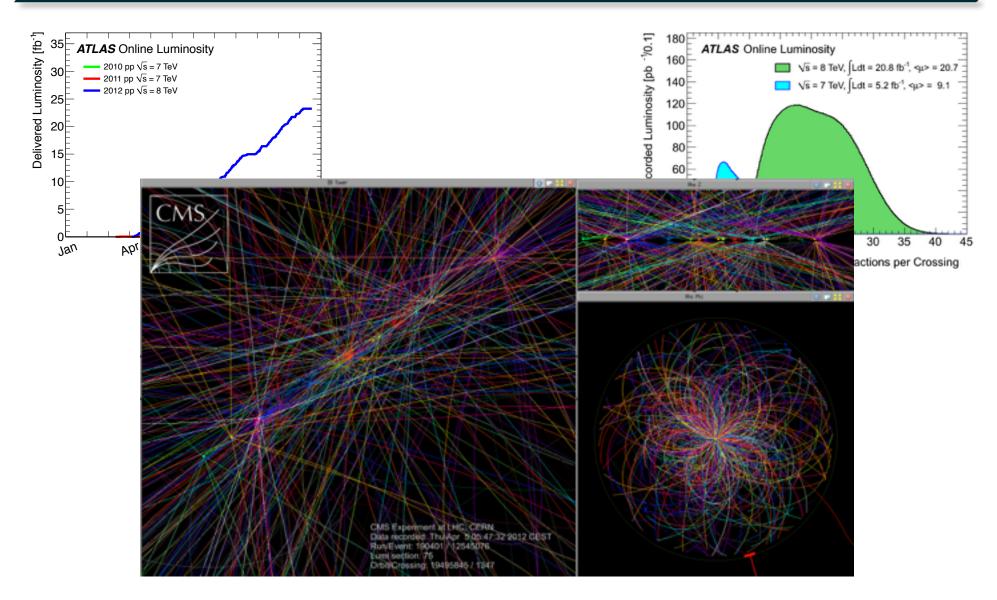


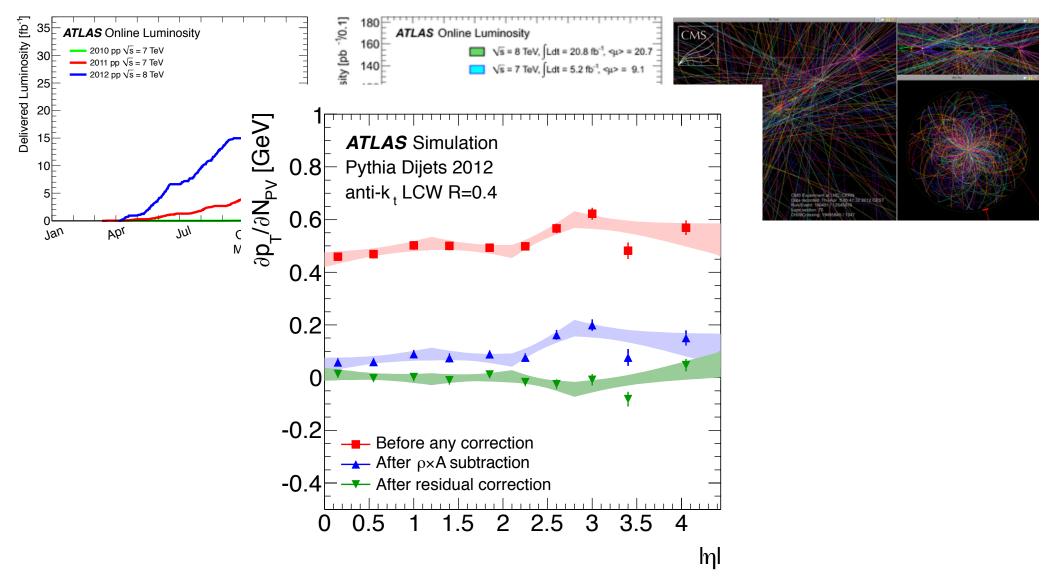
Final state characterised by

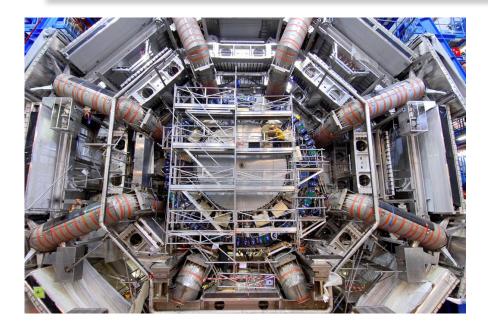
- missing transverse momentum (LSP)
- b-jets
- kinematical constraints (resonances/end points) from top/W decay

Experimental setup



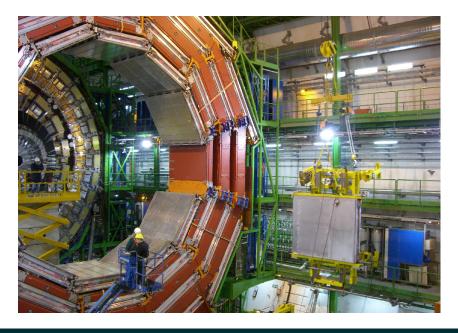

LHC - performance of the machine


LHC - performance of the machine

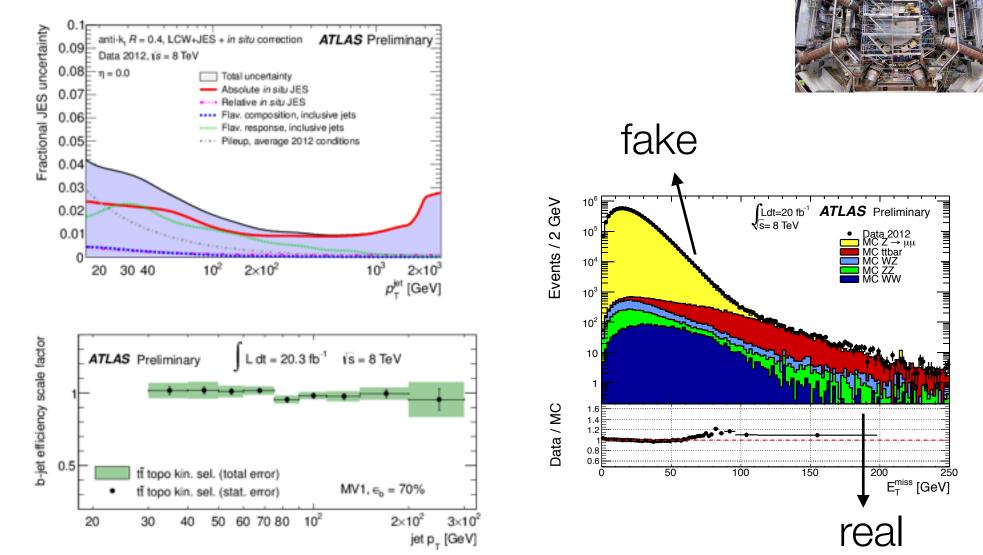

LHC - performance of the machine

ATLAS and CMS

University of Sussex



CMS


- high-resolution EM calorimeter
- excellent tracking performance in ID and muon spectrometer, heavily used for jet and MET measurement as well

ATLAS

- high-granularity "pointing" EM calorimeter
- good resolution for hadronic calorimetry
- good tracking in ID and muon spectrometer

Performance highlights

The Standard Model in one slide

		ion Cross Section Measurements 🕷	[fb ⁻¹] Reference
pp total	σ = 95.35 ± 0.38 ± 1.1 heckb (8990) COMPETE RPp2u 2002 (theory)	9 9	8×10 ⁻⁸ ATLAS-CONF-2014-040
Jets R=0.4	vr = 563.9 x 1.5 + 55.4 - 51.4 nb (data) MLCOatr++, CT10 (theory)	0.1 < py < 2 TeV	4.5 ATLAS-STDM-2013-11
ijets R=0.4	<pre>v* = 96.87 x 0.26 + 7.56 - 7.2 r/b (data) NLCUetr+r, CT10 (theory)</pre>	0.3 < my < 5 TeV	4.5 JHEP 05. 059 (2014)
W total	$\label{eq:states} \begin{split} \sigma &= 94.53\pm0.294\pm3.726\mbox{ rb}\mbox{ (data)} \\ {\rm FEW2}\mbox{-HERAL5}\mbox{ NNLO}\mbox{ (beory)} \end{split}$	¢ 4	0.035 PHD 85, 072004 (2012)
Z	$\sigma = 27.94 \pm 0.178 \pm 1.096 \mathrm{rb} \mathrm{(Iata)} \\ \mathrm{FEW2} \mathrm{cHERAL5} \mathrm{NNLO} \mathrm{(heory)}$	¢ 4	0.035 PR0 85, 672004 (2012)
tī	σ = 182.9 ± 3.1 ± 6.4 pb (Sata) 800++ NNLQ+NNLL (theory)	¢. D	4.6 arXiv:1406.5375 [hep-ex
total	σ = 242.4 ± 1.7 ± 30.2 pb (data) top++ NNL(2+NNLL (heory)	4 4	20.3 arXiv:1406.5375 (hep-ex
t _{t-chan}	<pre>if = 68.0 x 2.0 x 8.0 pb (data) NL(0+NLL (theory)</pre>	Ŷ	4.6 arXiv:1406.7844 [hep-ex
total	$\label{eq:approx} \begin{split} \sigma &= 02.6 \pm 1.2 \pm 12.0 \text{pb-(data)} \\ \text{MLO+NL} (\text{NetOry}) \end{split}$	4	20.3 ATLAS CONF-2014-007
VW+WZ	σ = 72.0 + 9.0 + 19.8 pb (0sta) MCFM (theory)	ATLAS Preliminary	4.7 ATLAS-CONF-2012-157
ww	or = 51.9 x 2.0 x 4.4 pb (data) MCFM (theory)	Run 1 √s = 7, 8 TeV	4.6 PRD 87, 112001 (2013)
total	σ = 71.4 ± 1.2 ± 5.5 = 4.9 pb (deta) MCFM (theory)	A Run 1 $\sqrt{s} = 7, 8$ lev	20.3 ATLAS-CONF-2014-033
H _{ssF}	cr = 19.0 + 6.2 − 6.0 + 2.6 − 1.9 pb (deta) U+C=RCSWG (theory)		4.8 ATL PHYS-PUB-2014-0
total	$\sigma = 25.4 \pm 3.6 \pm 3.5 \pm 2.9 \pm 2.3 {\rm pb} ({\rm data}) \\ {\rm U4C} \pm {\rm HCSWG} ({\rm theory})$	LHC pp $\sqrt{s} = 7 \text{ TeV}$	20.3 ATL-PHYS-PUB-2014-0
Wt	or = 16.8 x 2.9 x 3.9 pb (data) NL/D+NLL (theory)		2.0 PLB 716, 142-159 (2012
total	σ = 27.2 x 2.8 x 5.4 pb (data) NL/D+NLL (theory)	Theory	20.3 ATLAS-CONF-2013-108
wz	or = 19.0 + 1.4 - 1.3 a 1.0 pb (data) MCPM (meory)	Data Data	4.6 EPUC 72, 2173 (2012)
total	or = 20.3 + 0.0 - 0.7 + 1.4 - 1.3 pb (data) MCPM (Peory)	↓ stat stat+syst	13.0 XTLAS CONF-2013-021
ZZ	$\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4 \text{ pb} (\text{data})$ MCFM (Netry)	Ŷ	4,6 JHEP 03, 128 (2013)
total	or = 7.1 + 0.5 - 0.4 ± 0.4 p0 (Seta) MCFM (Peery)	4 LHC pp $\sqrt{s} = 8 \text{ TeV}$	20.3 ATLAS-CONF 2013-020
HVBF	σ = 2.6 ± 0.6 ± 0.5 ± 0.4 μb (data) LHC #0X3WG (free/y)		▲ 20.3 ATL#HTS#UB2014-0
ttW Iotal	σ = 300.0 + 320.0 - 100.0 + 70.0 - 40.0 to (data)	Data star star+syst	20.3 ATLAS CONF 2014-008
tīZ	σ = 150.0 + 55.0 - 50.0 + 21.0 tb (deta) HELAC-MLD (theory)	anarvayar	20.3 ATLAS-CONF-2014-028
total	at count count count count		
	10^5 10^4 10^3 10^2 10^1 1	$10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^{11} \ 0.5 \ 1 \ 1.$	5 2
	10 10 10 10 10 1	10 10 10 10 10 10 10 0.5 1 1.	5 2

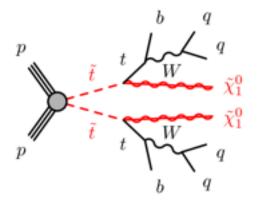
SUSY searches

Simplified model approach

University of Sussex

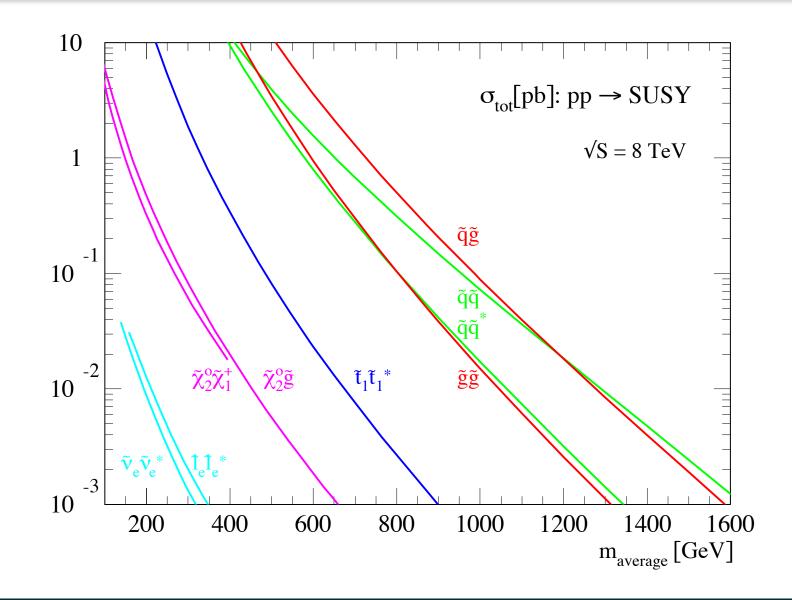
- Simplified model:
 - only one (or few) SUSY production mode
 - only one (or few) decay mode
 - only few SUSY particles involved in the decay

The good:

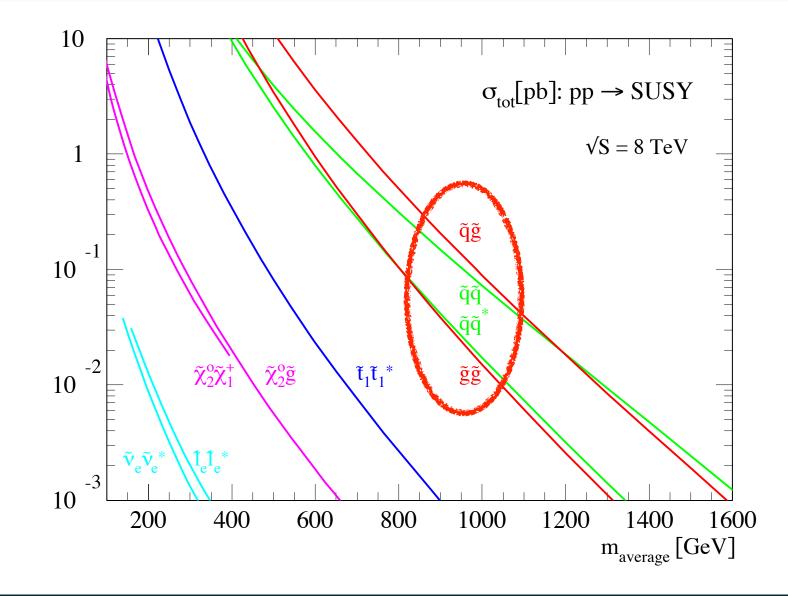

- Optimise for a well defined topology
- Intuitive understanding of sensitivity
- Exclusion limits easily reproducible by theory colleagues

The bad:

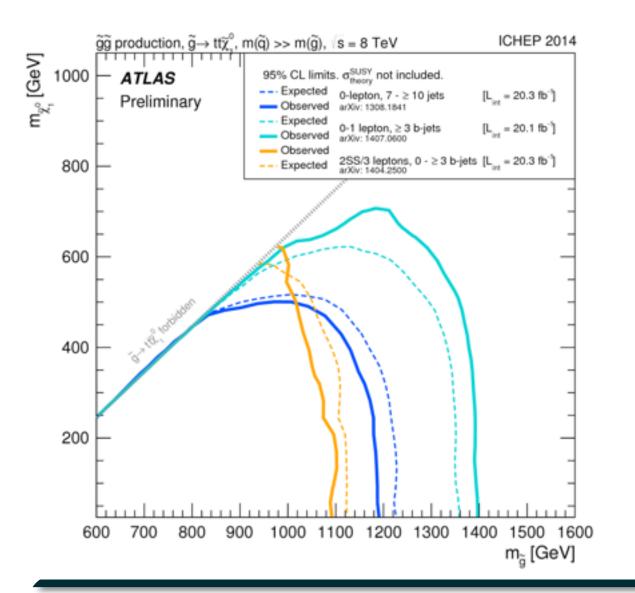
- The approach becomes quickly cumbersome at increasing complexity of final state

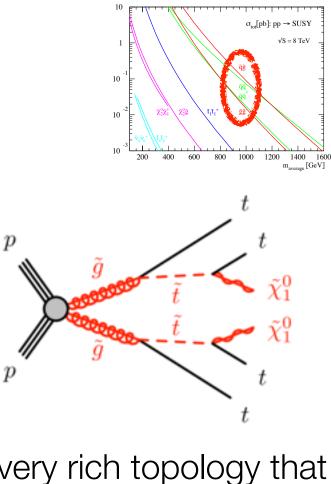

The ugly:

 Real model complexity hidden: sensitivity claimed on simplified model does not necessarily map to a real model



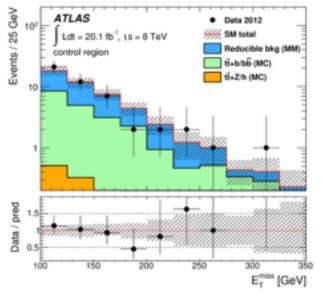
SUSY searches


SUSY searches



Gluino mediated stop production

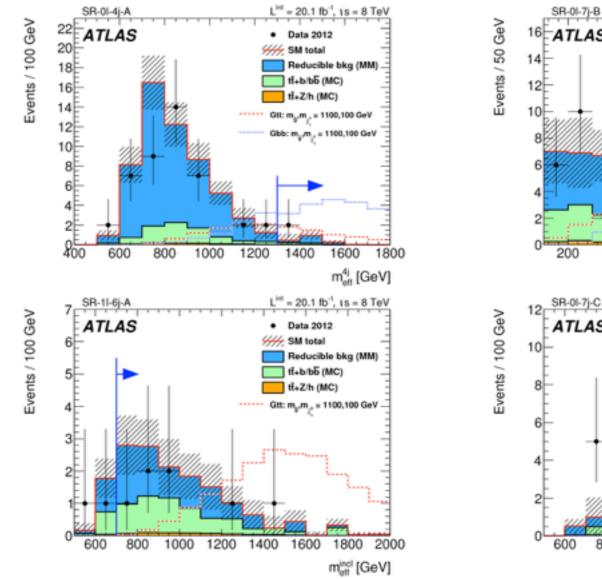
University of Sussex



A very rich topology that can be targeted from many points of view

0/1 lepton - 3 b-jets

- Background estimation strategy with so-called "matrix method" approach is key
 - Reducible background: mostly ttbar



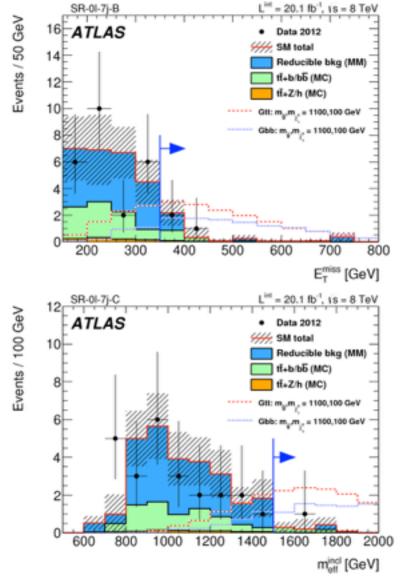
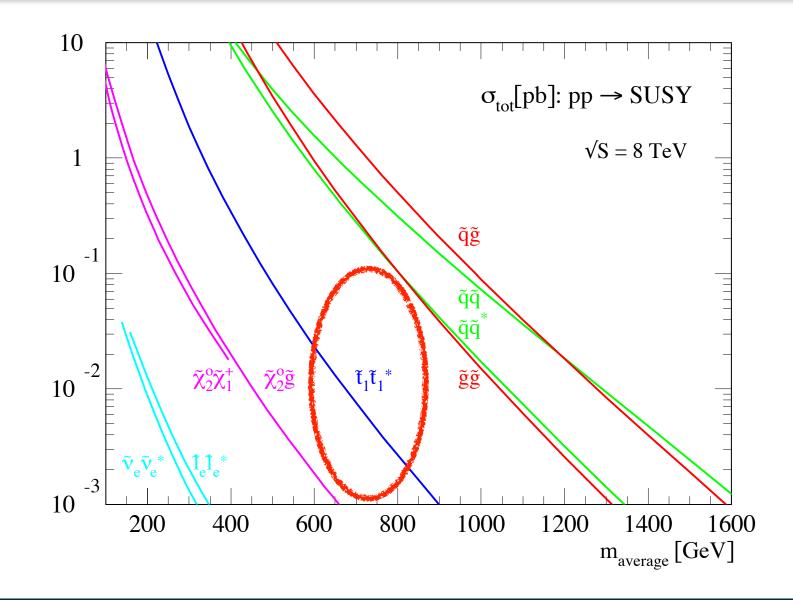
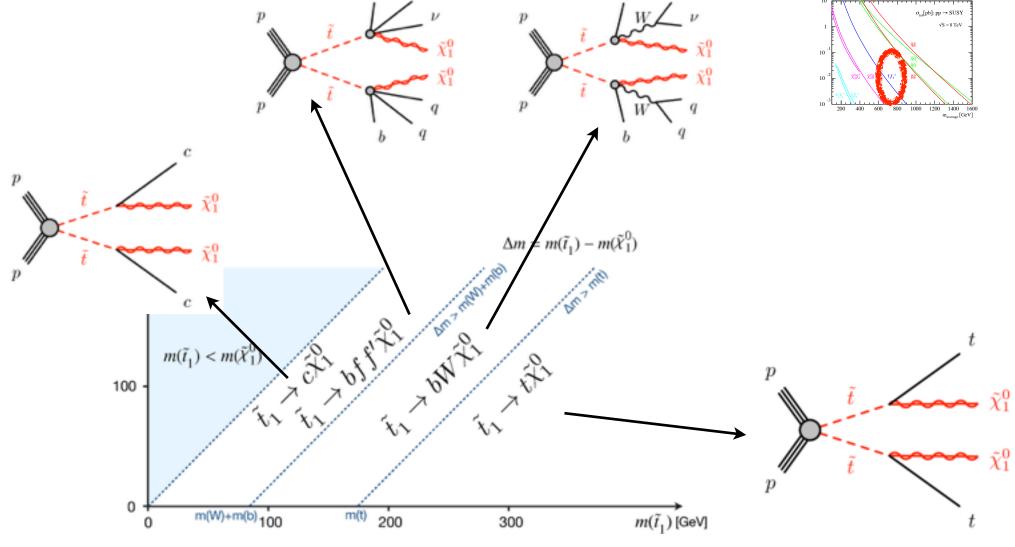

Baseline 0-lepton selection: lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV, $\Delta \phi_{\min}^{4j} > 0.5$, $E_T^{\text{miss}}/m_{\text{eff}}^{4j} > 0.2$, ≥ 3 b-jets with $p_T > 30$ GeV						
	N jets ($p_{\rm T}$ [GeV])	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{4j}}}~[\sqrt{\mathrm{GeV}}]$		
SR-0ℓ-4j-A	≥ 4 (50)	> 250	$m_{\text{eff}}^{4\text{j}} > 1300$	-		
SR-0ℓ-4j-B	≥ 4 (50)	> 350	$m_{\text{eff}}^{4)} > 1100$	-		
$SR\text{-}0\ell\text{-}4j\text{-}C^*$	≥ 4 (30)	> 400	$m_{\rm eff}^{4j} > 1000$	> 16		
SR-0ℓ-7j-A	≥ 7 (30)	> 200	$m_{\rm eff}^{\rm incl} > 1000$	-		
SR-0ℓ-7j-B	≥ 7 (30)	> 350	$m_{\text{eff}}^{\text{incl}} > 1000$	-		
$SR-0\ell-7j-C$	≥ 7 (30)	> 250	$m_{\rm eff}^{\rm incl} > 1500$	-		
Baseline 1-	-lepton selection: \geq	1 signal lepton	$(e,\mu), p_T^{j_1} > 90$	GeV, $E_T^{\text{miss}} > 150 \text{ GeV}$,		
	\geq 4 jets with p_T :	$> 30 \text{ GeV}, \ge 3$	b -jets with p_T	> 30 GeV		
	N jets $(p_{\rm T}~[{\rm GeV}])$	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	$m_{\rm T}$ [GeV]	$m_{\rm eff}^{\rm incl}$ [GeV]		
SR-1ℓ-6j-A	≥ 6 (30)	> 175	> 140	> 700		
SR-1ℓ-6j-B	≥ 6 (30)	> 225	> 140	> 800		
$SR-1\ell$ -6j-C	≥ 6 (30)	> 275	> 160	> 900		

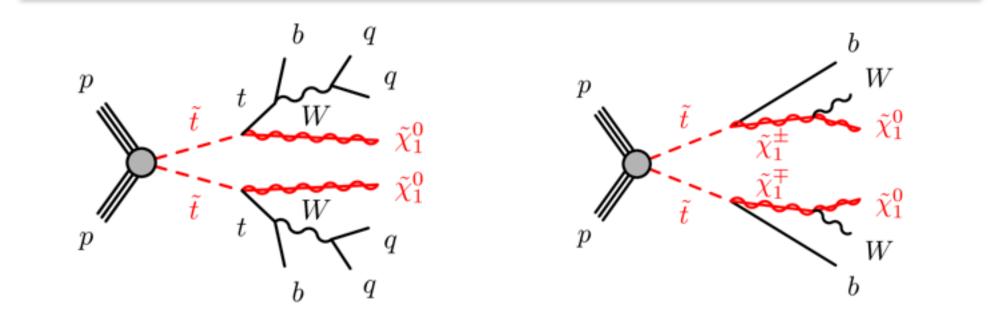
Table 2. Definition of the signal regions used in the 0-lepton and 1-lepton selections. The jet $p_{\rm T}$ threshold requirements are also applied to b-jets. The notation SR-0 ℓ -4j-C* means that the leading jet is required to fail the b-tagging requirements to target the region close to the kinematic boundary in the Gbb model.

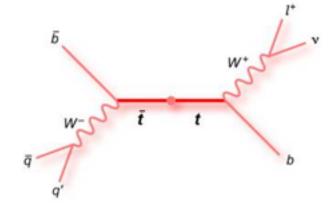

0/1 lepton - 3 b-jets


SUSY searches

Direct stop/sbottom production

US University of Sussex

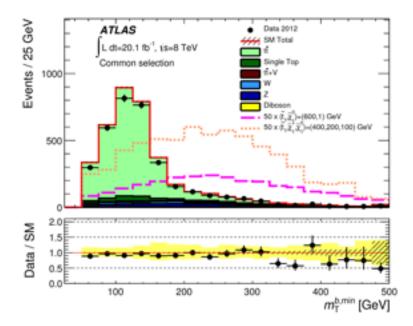

University of Sussex $\sigma_{...}[pb]: pp \rightarrow SUSY$ $\sqrt{S} = 8 \text{ TeV}$ 10

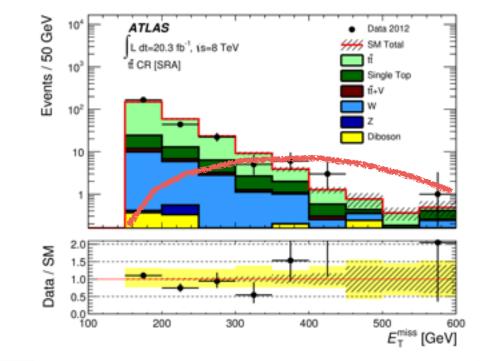

Stop 0-lepton

University of Sussex

Main SM background: top pair production

Semileptonic decay of tt The lepton is either lost or it is a hadronically decaying tau

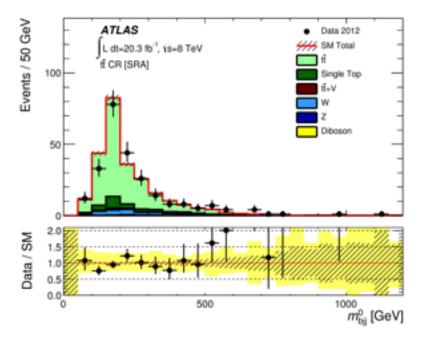


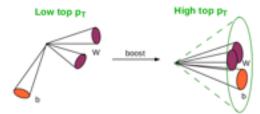


Fighting the background

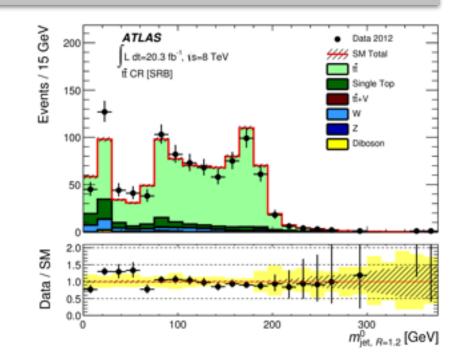
University of Sussex

The signal has more MET than the background


In semileptonic tt, consider the leptonic decay leg. The **transverse mass** between the b and the MET has a **kinematic endpoint** (it isn't the case for signal)


Fighting the background

University of Sussex


Use of top mass shell conditions

Or boosted top reconstruction

The signal has **two three-jet resonant system**, the background only one

RAL - Seminar - 11 March 2015

29

RAL - Seminar - 11 March 2015

Signal region definition

Boosted top SR

Preselection

Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$
N _{lep}	0
b-tagged jets	≥ 2
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV
$\left \Delta\phi\left(\mathrm{jet},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} ight) ight $	$> \pi/5$
$\Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss, track}} \right)$	$<\pi/3$
$m_T^{b,\min}$	> 175 GeV

Resolved signal region for t neut

< 225 GeV

< 250 GeV

-

SRA2

> 250 GeV

SRA1

> 150 GeV

Recover	on	h-ch	araino
INECOVEL	ΟΠ	D-CI	aryino

 $\geq 6, p_{\rm T} > 80, 80, 35, 35, 35, 35$ GeV

yes

SRA3

> 300 GeV

	SRB1	SRB2					
anti- $k_t R = 0.4$ jets	4 or 5, p _T > 80,80,35,35,(35) GeV	5, p _T > 100, 100, 35, 35, 35 GeV			SRC1	SRC2	SRC3
\mathcal{A}_{m_l} $p^0_{T, jet, R=1.2}$	< 0.5	> 0.5 > 350 GeV	:	anti- $k_l R = 0.4$ jets	5, p _T >	80,80,35,35,	35 GeV
jet,R=1.2	> 80 GeV	[140, 500] GeV	•	$\left \Delta\phi\left(b,b ight) ight $		$> 0.2\pi$	
$m_{\text{jet},R=1.2}^1$	[60, 200] GeV	-)	$m_{\rm T}^{b,\min}$	> 185 GeV	> 200 GeV	> 200 GeV
$m_{\rm pct,R=0.8}^0$ $m_{\rm T}^{\rm min}$	> 50 GeV	[70, 300] GeV		$m_{\rm T}^{\dot{b},{\rm max}}$	> 205 GeV	> 290 GeV	> 325 GeV
$\frac{m_{\rm T}}{m_{\rm T}}$ (jet ³ , $\mathbf{p}_{\rm T}^{\rm miss}$)	> 175 GeV > 280 GeV for 4-jet case	> 125 GeV		τ veto		yes	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$		$> 17\sqrt{\text{GeV}}$		$E_{\mathrm{T}}^{\mathrm{miss}}$	>160 GeV	> 160 GeV	> 215 GeV
ET	> 325 GeV	> 400 GeV					-

anti- $k_t R = 0.4$ jets

min mT (jet', pmiss)

 m_{bjj}^0

 m_{bii}^1

 τ veto

 $E_{\rm T}^{\rm miss}$

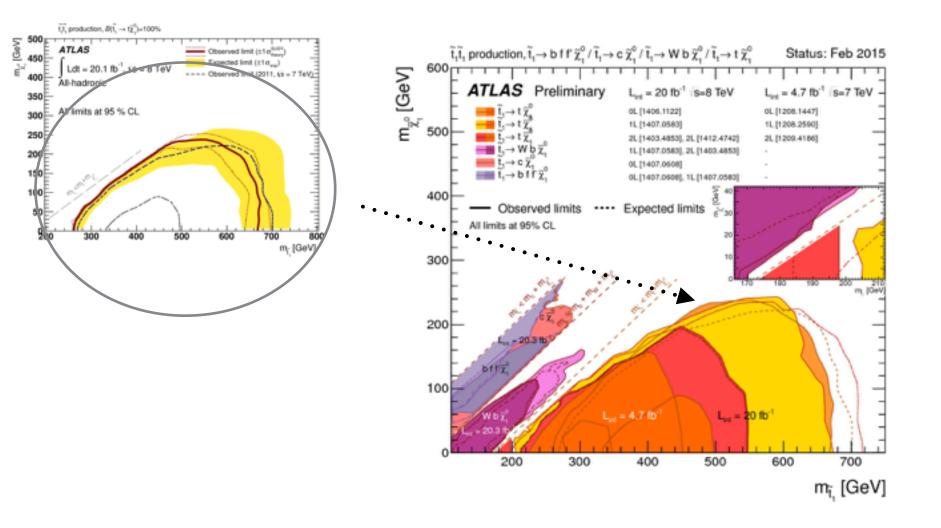
University of Sussex

University of Sussex

SRA4

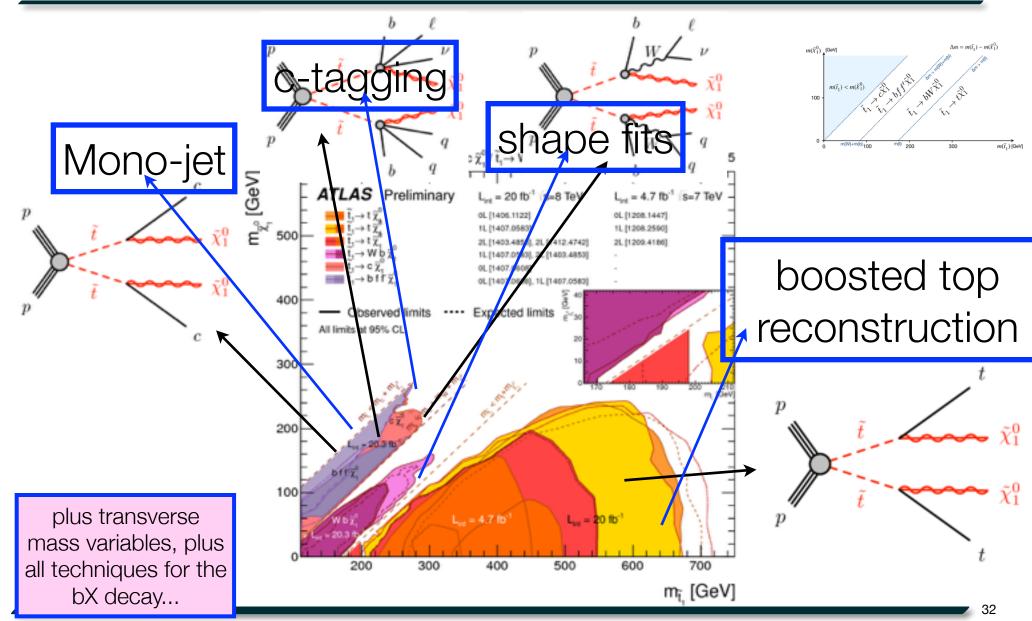
> 350 GeV

[50,250] GeV


[50,400] GeV

> 50 GeV

Results


	SRA1	SRA2	SRA3	SRA4	SRB	SRC1	SRC2	SRC3
Observed events	11	4	5	4	2	59	30	15
Total SM	15.8 ± 1.9	4.1 ± 0.8	4.1 ± 0.9	2.4 ± 0.7	2.4 ± 0.7	68 ± 7	34 ± 5	20.3 ± 3.0
tī	10.6 ± 1.9	1.8 ± 0.5	1.1 ± 0.6	0.49 ± 0.34	0.10 + 0.14 - 0.10	32 ± 4	12.9 ± 2.0	6.7 ± 1.2
$t\bar{t}+W/Z$	1.8 ± 0.6	0.85 ± 0.29	0.82 ± 0.29	0.50 ± 0.17	0.47 ± 0.17	3.2 ± 0.8	1.9 ± 0.5	1.3 ± 0.4
Z + jets	1.4 ± 0.5	0.63 ± 0.22	1.2 ± 0.4	0.68 ± 0.27	1.23 ± 0.31	15.7 ± 3.5	9.0 ± 1.9	6.1 ± 1.3
W + jets	1.0 ± 0.5	0.46 ± 0.21	0.21 ± 0.19	$0.06 {}^{+0.10}_{-0.06}$	0.49 ± 0.33	8 ± 4	4.8 ± 2.2	2.8 ± 1.2
Single top	1.0 ± 0.4	0.30 ± 0.17	0.44 ± 0.14	0.31 ± 0.16	0.08 ± 0.06	7.2 ± 2.9	4.5 ± 1.8	2.9 ± 1.4
Diboson	< 0.4	< 0.13	0.32 ± 0.17	0.32 ± 0.18	0.02 ± 0.01	1.1 ± 0.8	0.6 + 0.7 - 0.6	$0.6^{+0.7}_{-0.6}$
Multijets	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.24 ± 0.24	0.06 ± 0.06	0.01 ± 0.01
$\sigma_{\rm vis}$ (obs) [fb]	0.33	0.29	0.33	0.32	0.21	0.78	0.62	0.40
$\sigma_{\rm vis}({ m exp})$ [fb]	$0.48 {}^{+ 0.21}_{- 0.14}$	$0.29 {}^{+0.13}_{-0.09}$	$0.29 {}^{+ 0.14}_{- 0.09}$	$0.25 {}^{+ 0.13}_{- 0.07}$	$0.24 {}^{+ 0.13}_{- 0.06}$	$1.03 \substack{+ 0.42 \\ - 0.29}$	$0.73^{+0.31}_{-0.21}$	$0.55 {}^{+ 0.24}_{- 0.15}$
Nobs	6.6	5.7	6.7	6.5	4.2	15.7	12.4	8.0
$N_{\rm obs}^{95}$ $N_{\rm exp}^{95}$	$9.7^{+4.3}_{-3.0}$	$5.8^{+2.6}_{-1.8}$	$5.9^{+2.8}_{-1.9}$	5.0 + 2.6 - 1.4	4.7 + 2.6 - 1.2	$20.7^{+8.4}_{-5.8}$	$14.7^{+6.2}_{-4.2}$	$11.0^{+4.9}_{-3.1}$

Limits

Direct stop/sbottom production

US University of Sussex

RAL - Seminar - 11 March 2015

RAL - Seminar - 11 March 2015

Third leading jet log(P_/P_)

Preselection

Data 2012

MC based

ts (data driven

7) = (200, 195) GeV

Data / SM

Events / 0.5

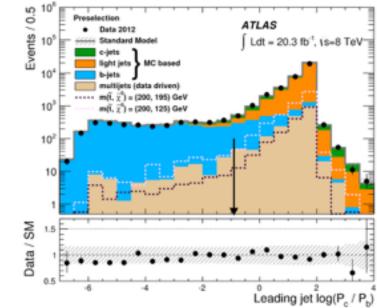
10

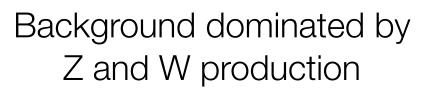
10

c-tagging

- Target: stop -> c neutralino
- Selection:

Secondary


Primary Vertex Verte


- Large missing transverse momentum
- Leading jet pT > 150 GeV

Displaced

Tracks

lepton veto

Tag efficiency: 20% for c, 12% for b, 0.5% for light jets

Ldt = 20.3 fb⁻¹, 1s=8 TeV

ATLAS

MET

⁶⁵ [Events/GeV]

dN/dE

10

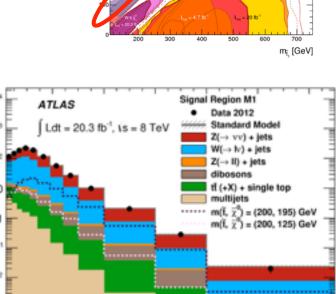
10

Data / SM

ISR tagging (monojet-like signatures)

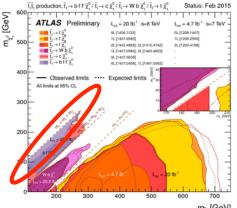
m(top) ~ m(neutralino):

t


 \tilde{t}

- Pair produced stops are invisible....
- ... unless we boost them
 - monojet-like signal (as in DM searches)
 high pt jet

t

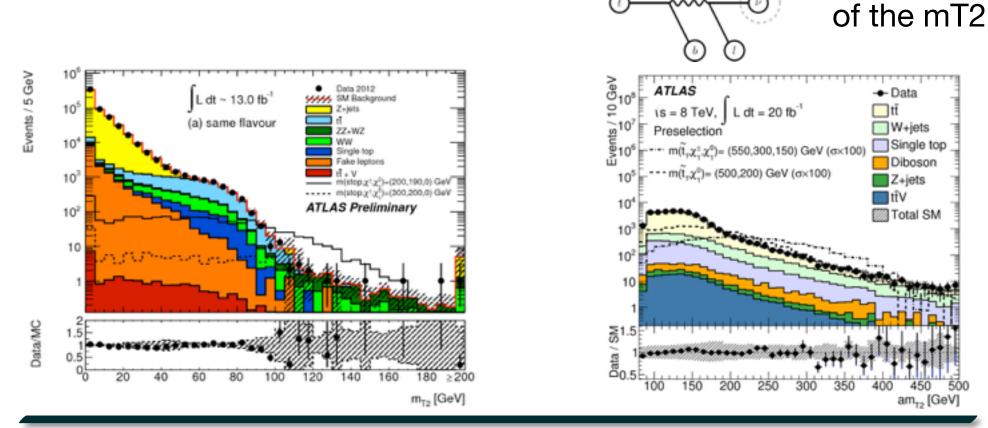

t

1000

1200

1400

E^{miss} [GeV]

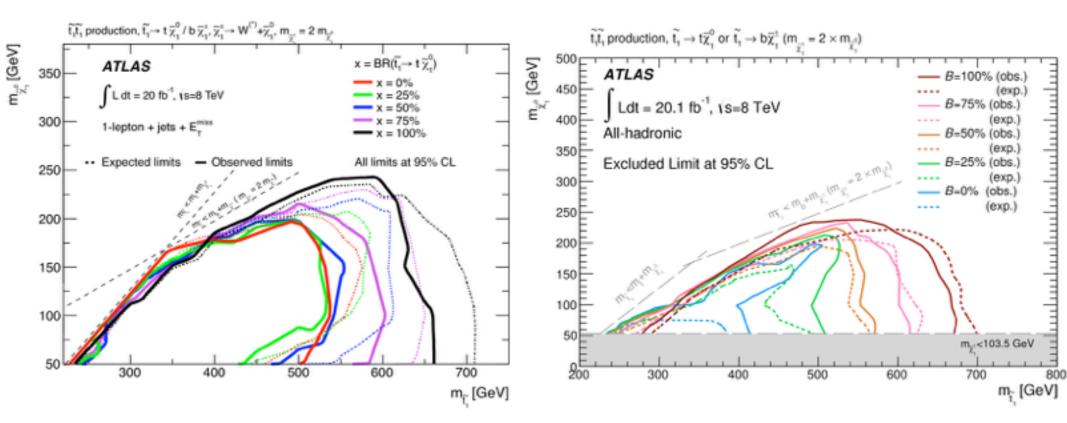


generalisation

• amT2: a

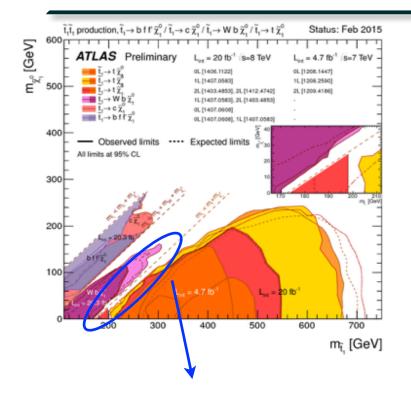
• mT2: an extension of the transverse mass variable

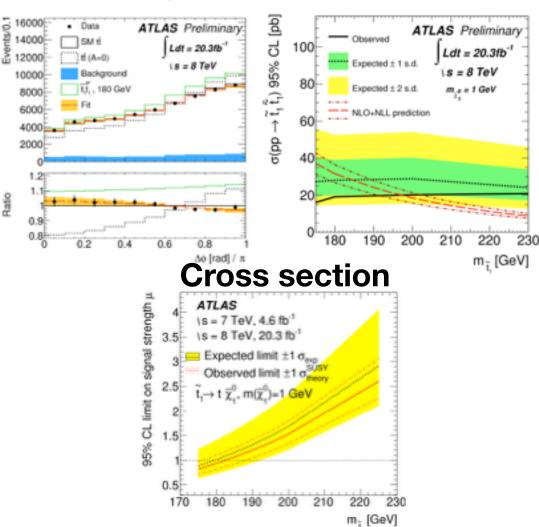
$$m_{\text{T2}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{p}_{\text{T}}^{\text{miss}}) = \min_{\mathbf{q}_{\text{T}} + \mathbf{r}_{\text{T}} = \mathbf{p}_{\text{T}}^{\text{miss}}} \left\{ \max[m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{r}_{\text{T}})] \right\}$$



RAL - Seminar - 11 March 2015

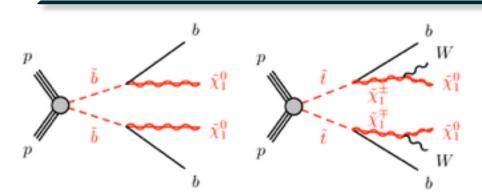
Limits dependency on BR($t \rightarrow t X_1^0$)


- University of Sussex
- Signal regions optimised for one specific topology. Combinations of signal regions make results less dependent on the decay details


Limits from SM measurements

University of Sussex

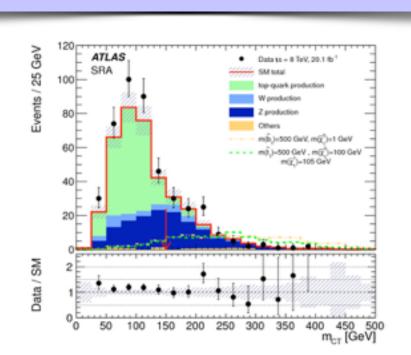
top like kinematics difficult to approach with searches

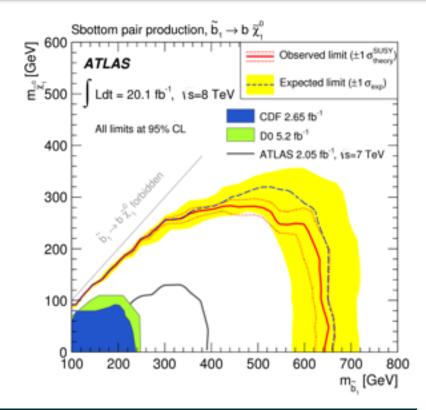


Spin correlations

Sbottom searches

US University of Sussex


University of Sussex



Same final state topology: bb MET

$$m_{\rm CT}(b_1, b_2) = \sqrt{\left(E_T(b_1) + E_T(b_2)\right)^2 - \left(\mathbf{p_T}(b_1) - \mathbf{p_T}(b_2)\right)^2}$$

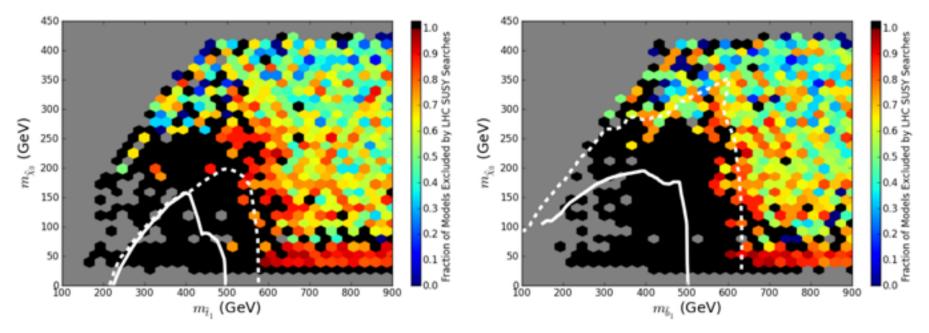
(boost corrected) $m_{CT}(b_1,b_2)$ has an end-point at $(m_{prod}^2 - m_{inv}^2)/m_{prod}$

The MSSM has **124 parameters**...

What happens in a real model?

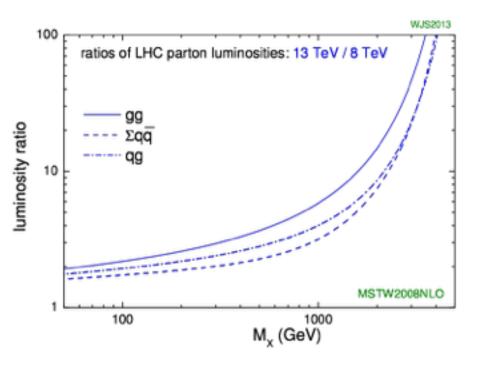
- ... which can be reduced to **19** by requiring:
 - $\boldsymbol{\cdot}$ No new source of $\boldsymbol{\mathsf{CP}}$ violation
 - No Flavour Changing Neutral Currents
 - First and second generation universality
- This is the phenomenological MSSM (or pMSSM)

Further constraints **can be imposed** (Higgs boson mass, dark matter density, heavy flavour decays)

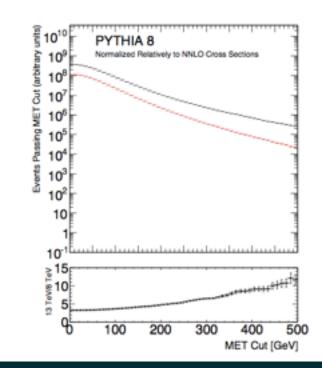

Parameter	Description		
$m_{\tilde{u}R}, m_{\tilde{d}R}, m_{\tilde{q}L1}, m_{\tilde{e}R}, m_{\tilde{\ell}L1}$	First and second generation common mass parameter		
$m_{\tilde{b}R}, m_{\tilde{t}R}, m_{\tilde{q}L3}, m_{\tilde{\tau}R}, m_{\tilde{\ell}L3}$	Third generation mass parameter		
M_1, M_2, M_3	Gaugino mass parameters		
A_b, A_τ, A_t	Trilinear couplings		
μ, M_A	Higgs/higgsino mass parameters		
$\tan \beta$	Ratio of vacuum expectation values of the two Higgs doublets		

University of Sussex

- Fraction of pMSSM models (with low fine tuning) with a given stop/sbottom mass excluded by ATLAS analyses
- (Stop analyses not completely up to date in the plots below)


From arXiv:1307.8444

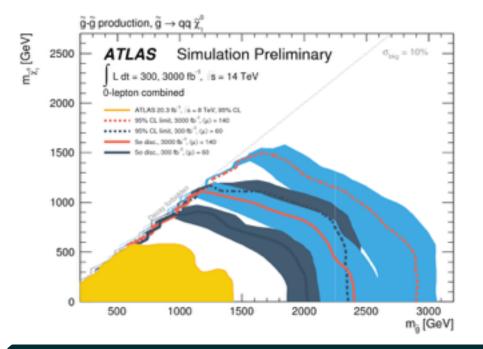
Prospects for run 2 and beyond

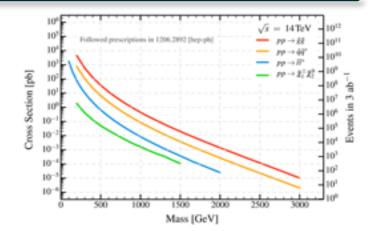

Prospects for run 2 and beyond

- LHC run 2 due to start **next June** with $\sqrt{s} = 13$ TeV.
- Increase in cms energy means increase in cross section sensitivity
 - a factor ~8 for mstop = 700 GeV
 - · but the background increases as well...

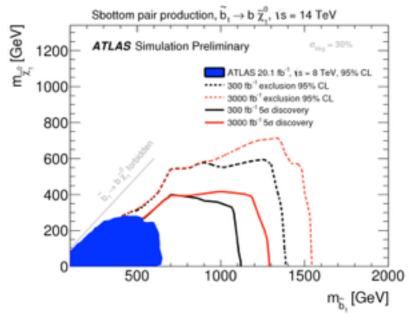
Production	fb-1 to outperform run 1	expected to be delivered by		
strong production	~ 1 fb-1	July/August 2015		
Third generation	~ 5 fb-1	End of summer 2015		
weak production	~ 20 fb-1	End of run 2015		

Prospects for run 2 and beyond




University of Sussex

(Highly) simplified detector simulation


Assuming cms of 14 TeV

Gluino pair production

Sbottom pair production

Summary

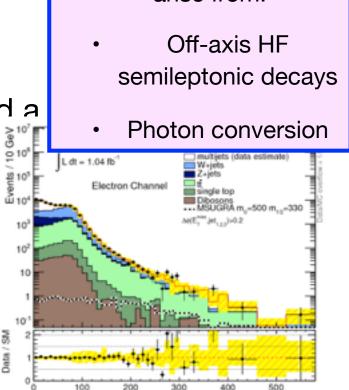
University of Sussex

University of Sussex

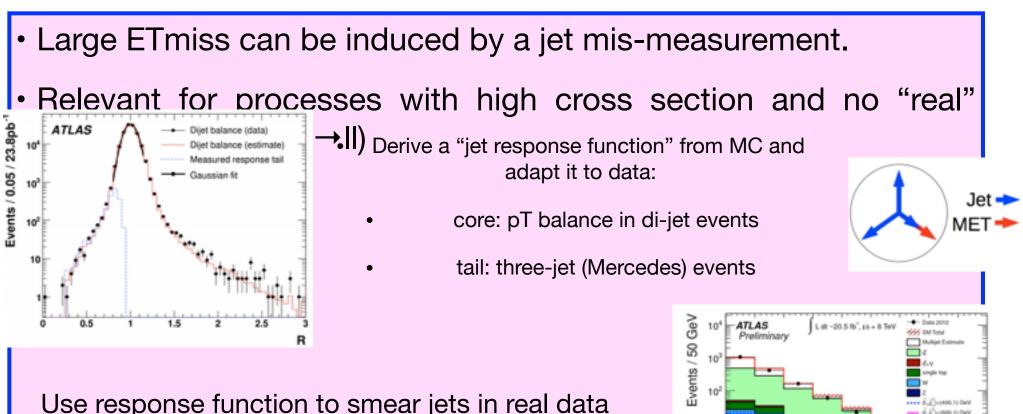
	TLAS SUSY Sea Itus: Feb 2015						AS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	ET	∫£ dr B	1 Mass limit	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \bar{q}\bar{q},\bar{q} \rightarrow q\bar{r}_1^{2} \\ \bar{q}\bar{q}\gamma,\bar{q} \rightarrow q\bar{r}_1^{2} (\text{compressed}) \\ \bar{g}\bar{g},\bar{g} \rightarrow q\bar{q}\bar{r}_1^{2} (\text{compressed}) \\ \bar{g}\bar{g},\bar{g} \rightarrow q\bar{q}\bar{g}^{2},\bar{q} \rightarrow q\bar{q}\bar{q}^{2} \\ \bar{g}\bar{g},\bar{g} \rightarrow q\bar{q}\bar{g}\bar{q}^{2},\bar{q}\bar{q}\bar{q}^{2} \\ \bar{g}\bar{g},\bar{g} \rightarrow q\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}^{2} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{q}\bar{q} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{q}\bar{q}\bar{q} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{g}\bar{q}\bar{q}\bar{q} \\ \bar{g}\bar{g}\bar{g}\bar{g}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}q$	$\begin{array}{c} 0 \\ 0 \\ 1 y \\ 2 e, \mu \\ 1 \cdot 2 r + 0 \cdot 1 \cdot \ell \\ 2 \gamma \\ 1 \cdot c, \mu + \gamma \\ \tau \\ 2 \cdot c, \mu (Z) \\ 0 \end{array}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets - 1-5 0-3 jets mono jet	*****	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	4.2 1.7 TeV m(g)=m(j) 4 850 GeV m(l)=m(l) 4 250 GeV m(l)=m(l) 4 250 GeV m(l)=m(l) 6 1.33 TeV m(l)=m(l) 7 1.33 TeV m(l)=m(l) 8 1.33 TeV m(l)=0.5(m(l)) 8 1.2 TeV m(l)=0.5(m(l)) 9 1.2 TeV m(l)=0.5(m(l)) 8 1.2 TeV m(l)=0.5(m(l)) 9 1.2 TeV m(l)=0.5(m(l)) 9 1.2 TeV m(l)=0.5(m(l)) 10 1.2 TeV m(l)=0.5(m(l)) 11 1.2 TeV m(l)=0.5(m(l)) 12 1.2 TeV m(l)=0.5(m(l)) 13 1.2 TeV m(l)=0.5(m(l)) 14 1.2 TeV m(l)	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1507.03555 1407.0803 AFLAS-CONF-3012-144 1211.1877 AFLAS-CONF-3012-152 1502.01518
3 ¹⁴ gen. § med.	2667 267 267 267	0 0 0-1 e.p 0-1 e.p	3.b 7-10 jets 3.b 3.b	100 100 100 100	20.1 20.3 20.1 20.1	2 1.25 TeV m(\vec{k}_1^2)<400 GeV 2 1.1 TeV m(\vec{k}_1^2)<400 GeV	1407.0800 1300.1841 1407.0800 1407.0800
3 rd gen. squarks direct production	$ \begin{split} \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{H}_1^0 \text{ or } \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow c \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow c \tilde{H}_1^0 \\ \tilde{h}_1 \tilde{h}_1 (\text{ratural GMSB}) \\ \tilde{h}_1 \tilde{h}_1 (\text{ratural GMSB}) \\ \tilde{h}_2 \tilde{h}_2, \tilde{h}_2 \rightarrow d_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \epsilon, \mu (SS) \\ 1 - 2 \epsilon, \mu \\ 2 \epsilon, \mu \\ 0 - 1 \epsilon, \mu \\ 0 \\ 1 \\ \epsilon, \mu (Z) \\ 3 \epsilon, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1-2 b 1-2 b 1-2 b 1-2 b 1-2 b 1-2 b	100 00 00 100 00 100 1	20.1 20.3 4.7 20.3 20.3 20.3 20.3 20.3 20.3	μ 100-620 GeV m(t)-00-64V μ 275-440 GeV m(t)-00-64V μ 275-440 GeV m(t)-00-64V μ 275-440 GeV m(t)-00-64V μ 230-460 GeV m(t)-00-64V μ 230-460 GeV m(t)-00-64V μ 210-640 GeV m(t)-10-64V μ 210-640 GeV m(t)-10-64V μ 210-640 GeV m(t)-10-64V μ 210-640 GeV m(t)-10-64V μ 210-640 GeV m(t)-10-60V μ 100-560 GeV m(t)-10-60V μ 100-560 GeV m(t)-10-60V μ 290-600 GeV m(t)-10-60V	1308.2831 1404.2900 1208.2162, 1407.8583 1403.4853, 1412.4742 1437.0583,1406,1122 1437.0583 1405.522 1403.522
EW direct	$\begin{array}{l} \tilde{t}_{L,R}\tilde{t}_{L,R},\tilde{t}\rightarrow t\tilde{t}_{1}^{0} \\ \tilde{s}_{1}^{+}\tilde{t}_{1}^{-},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{-},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{-},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{-},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+},\tilde{s}_{1}^{+}\rightarrow \tilde{t}r(tP) \\ \tilde{s}_{1}^{+}\tilde{s}_{1}^{+},\tilde{s}_{1$	2 е.н 2 е.н 2 т 3 е.н 2 3 е.н 7 е.н. у 4 е.н	0 0 0-2 jets 0-2 h 0	****	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	7 99-325 GeV m(t_1^2)=0.0eV \$\hat{k}_1^*\$ 140-455 GeV m(t_1^2)=0.0eV, m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 100-350 GeV m(t_1^2)=0.0eV, m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 100-350 GeV m(t_1^2)=0.0eV, m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 700 GeV m(t_1^2)=0.0eV, m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 700 GeV m(t_1^2)=m(t_1^2), m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 420 GeV m(t_1^2)=m(t_1^2), m(t_1^2)=0.5(m(t_1^2)=m(t_1^2)) \$\hat{k}_1^*\$ 620 GeV m(t_1^2)=m(t_1^2), m(t_1^2)=0.5(m(t_1^2)=m(t_1^2))	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.67110 1405.5086
Long-lived particles	Direct $\vec{k}_1^+ \vec{k}_1^-$ prod., long-lived \vec{k}_1^+ Stable, stopped \underline{k} R-hadron Stable \hat{g} R-hadron GMSB, stable $\hat{\tau}, \vec{k}_1^0 \rightarrow t(\hat{\tau}, \hat{\mu}) + r(r, \hat{g})$ GMSB, $\vec{k}_1^0 \rightarrow yG$, long-lived \vec{k}_1^0 $\vec{q}, \vec{k}_1^0 \rightarrow q_H (\text{BPV})$	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes	20.3 27.9 19.1 19.1 20.3 20.3	A* 270 GeV m(t^2)=m(t^2)=100 MeV, m(t^2)=0.2 ms # #32 GeV m(t^2)=100 GeV, 10 µst-m(t)=1000 s # 1.27 TeV # # 537 GeV H0-tangl-50 # 435 GeV 2-m(t^2)=100 dev, 10 µst-m(t)=100 dev	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
ЧЧЫ	$ \begin{array}{l} LPY pp {\rightarrow} \tilde{r}_{1} + X, \tilde{r}_{1} {\rightarrow} \sigma + \mu \\ LPY pp {\rightarrow} \tilde{r}_{1} + X, \tilde{r}_{2} {\rightarrow} \sigma(\mu) + \tau \\ Binear RPY CMSSM \\ \tilde{s}_{1}^{+} \tilde{r}_{1}^{-}, \tilde{s}_{1}^{+} {\rightarrow} WE_{1}^{0}, \tilde{s}_{1}^{-} {\rightarrow} \sigma \tilde{r}_{p}, q \tilde{r}_{r} \\ \tilde{s}_{1}^{+} \tilde{r}_{1}^{-}, \tilde{s}_{1}^{+} {\rightarrow} WE_{1}^{0}, \tilde{s}_{1}^{-} {\rightarrow} \sigma \tilde{r}_{r} \\ \tilde{s}_{2}^{-} q q q \\ \tilde{s} {\rightarrow} \tilde{q}_{1} \\ \tilde{s}_{1}^{-} \tilde{s}_{1}^{-} {\rightarrow} BS \end{array} $	$\begin{array}{c} 2e,\mu\\ 1e,\mu+\tau\\ 2e,\mu(38)\\ 4e,\mu\\ 3e,\mu+\tau\\ 0\\ 2e,\mu(55)\end{array}$	0.3.5 0.3.5 0.3.5 0.3.5	Yos Yos Yos	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	K. K.01 TeV J ² ₀₁₁ -0.16, J ₀₁₂ -0.05 F. 1.1 TeV J ² ₀₁₁ -0.10, J ₀₁₂₀ -0.05 6.8 1.35 TeV m(20m(3), ct ₁₁₇ -0.10, J ₀₁₂₀ -0.05 8 ^a 750 GeV m(2 ^a) 0.0 2×m(3 ^b), J ₀₁₂₀ +0 8 ^a 450 GeV m(2 ^b) 0.2×m(3 ^b), J ₀₁₂₀ +0 8 ^b 916 GeV 880(-880(b)-880(b)-880(b)-6	1212.1272 1212.1272 1404.2500 1405.5986 1405.5986 AFLAS-CONF-2013-081 1404.250
Other		0 off = 8 TeV artial data		'Yes 8 TeV data	20.3 1	2 490 GeV #(()-200 GeV)-1 1 Mass scale [TeV]	1501.01325

"Only a selection of the available mass limits on new states or phenomena is shown. All limits guoted are observed minus 1/7 theoretical signal cross section uncertainty:

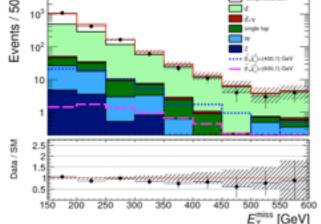
- SUSY yields an incredible number of well motivated possible topologies
 - While looking for SUSY we effectively constraint many BSM models
- Examples:
 - tt MET and bb MET signatures (stop, sbottom) show up in LQ and DM searches
 - 2j and 3j resonant searches for RPV gluino/squark decay
 - **Displaced vertices** searches for **long-lived charginos** sensitive to production of ANY heavy long lived charged particle



- University of Sussex
- General approach to fake lepton background estimation based on a loose/tight matrix method
- Example with 1 lepton (easily extendable · A fake lepton lepton can arise from:
- Strategy: define a "loose" (pre-selected) and a lepton selection.


 $egin{aligned} N^{loose} &= N^{loose}_{real} + N^{loose}_{fake} \ N^{tight} &= arepsilon_{real} N^{loose}_{real} + arepsilon_{fake} N^{loose}_{fake} \end{aligned}$

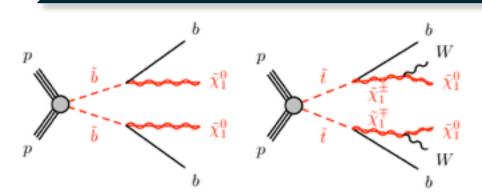
Need to be measured independently from data $N_{fake}^{tight} = \varepsilon_{fake}$ $\varepsilon_{real} + \varepsilon_{fake}$ Simply count how many of them $N_{fake}^{tight} = \varepsilon_{fake}$

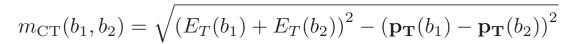

m, [GeV]

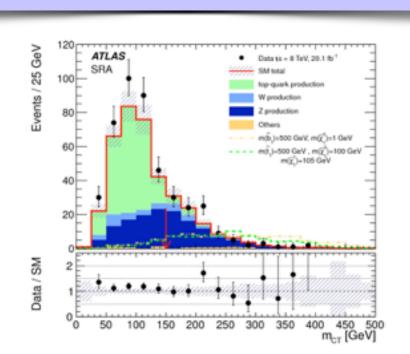
Fake ETmiss background estimate

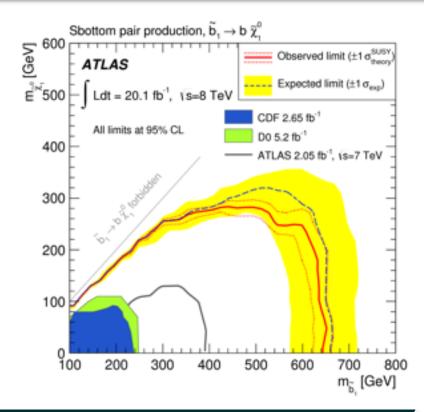
Use response function to smear jets in real data events with low MET:

Obtain events with large "fake" ETmiss

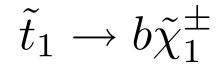

University of Sussex


Sbottom searches

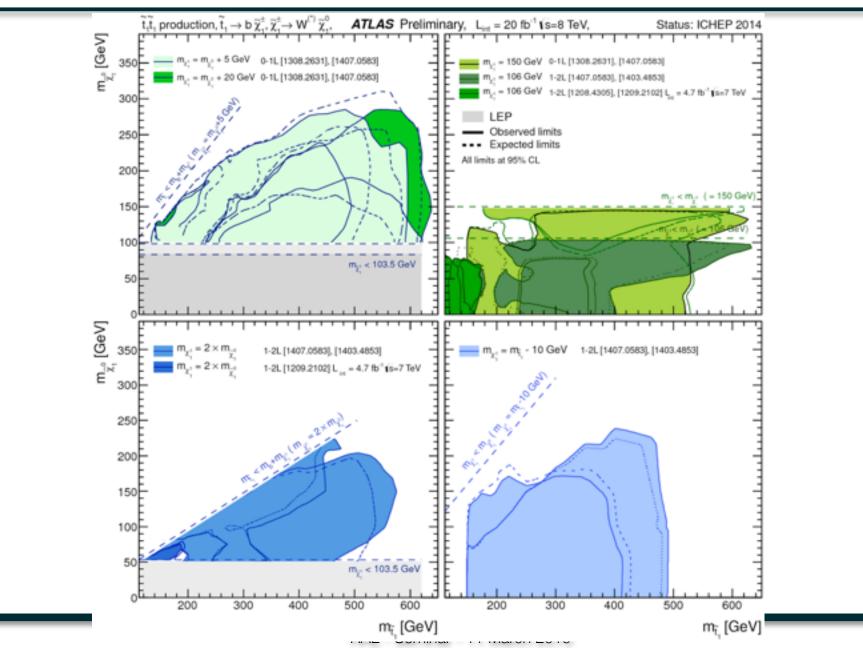

University of Sussex



Same final state topology: bb MET



(boost corrected) $m_{CT}(b_1,b_2)$ has an end-point at $(m_{prod}^2 - m_{inv}^2)/m_{prod}$



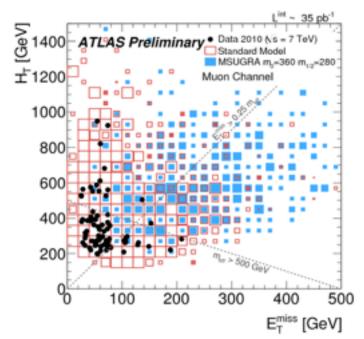
University of Sussex

53

Parameters and masses

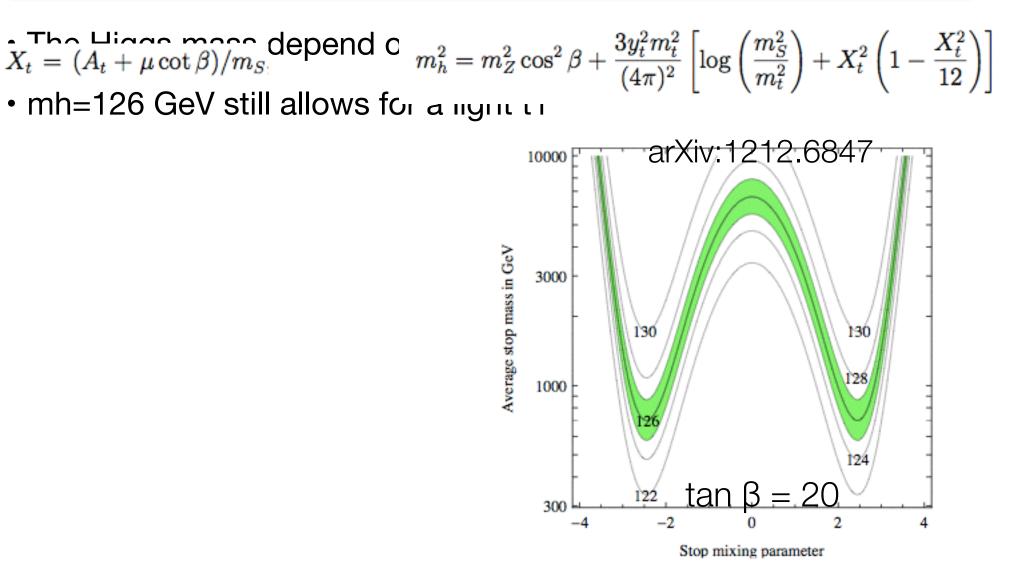
$$\begin{split} \psi^{0} &= (\widetilde{B}, \widetilde{W}^{0}, \widetilde{H}_{d}^{0}, \widetilde{H}_{u}^{0}) \quad \begin{array}{l} \text{Neutralinos} \\ \mathcal{L}_{\text{neutralino mass}} &= -\frac{1}{2} (\psi^{0})^{T} \mathbf{M}_{\widetilde{N}} \psi^{0} + \text{c.c.} \\ \mathbf{M}_{\widetilde{N}} &= \begin{pmatrix} M_{1} & 0 & -c_{\beta} s_{W} m_{Z} & s_{\beta} s_{W} m_{Z} \\ 0 & M_{2} & c_{\beta} c_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} \\ -c_{\beta} s_{W} m_{Z} & c_{\beta} c_{W} m_{Z} & 0 & -\mu \\ s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & 0 & -\mu \\ s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & -\mu & 0 \end{pmatrix} \\ \\ \hline \begin{array}{l} \mathbf{Stops and sbottoms} \\ \mathbf{m}_{t}^{2} &= \begin{pmatrix} m_{Q_{3}}^{2} + m_{t}^{2} + \Delta_{\widetilde{u}_{L}} & v(a_{t}^{*} \sin \beta - \mu y_{t} \cos \beta) \\ v(a_{t} \sin \beta - \mu^{*} y_{t} \cos \beta) & m_{\widetilde{u}_{3}}^{2} + m_{t}^{2} + \Delta_{\widetilde{u}_{R}} \end{pmatrix} \\ \hline \mathbf{m}_{b}^{2} &= \begin{pmatrix} m_{Q_{3}}^{2} + \Delta_{\widetilde{d}_{L}} & v(a_{b}^{*} \cos \beta - \mu y_{b} \sin \beta) \\ v(a_{b} \cos \beta - \mu^{*} y_{b} \sin \beta) & m_{\widetilde{d}_{3}}^{2} + \Delta_{\widetilde{d}_{R}} \end{pmatrix} \end{split}$$

University of Sussex


lepton

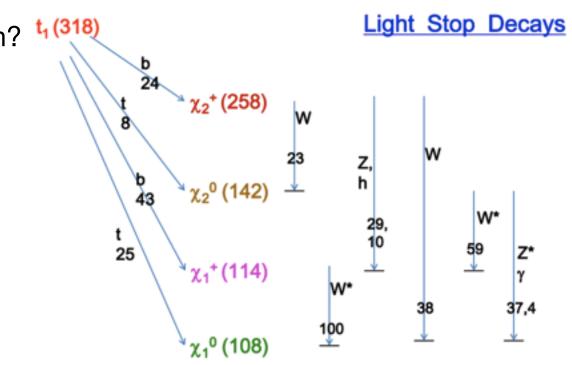
Higgs->bb

- · Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) PT jets and possibly other objects (leptons, photons) and MET (LSP)
- A "typical" SUSY event will have large MET and large Hising)
- Useful variables:


$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + ...)$$
$$M_{eff} = E_T^{miss} + H_T$$

 But also other variables with well defined kinematical end point for the SM background

Higgs and SUSY



What is missing? (3rd gen)

University of Sussex

- My own to-do list for the next few months/years:
 - Improve limits at high stop mass:
 - boosted top reconstruction?
- Mixed decays (50%[~] t1→tX10, 50% t1→bX1±) still not considered (and somewhat favoured, actually)
 - Complete the investigation in the low

Taken from <u>https://indico.cern.ch/contributionDisplay.py?</u> sessionId=75&contribId=58&confld=181298

US University of Sussex

Bs->mu mu

10^{×10⁻⁹} 10^{×10⁻⁹} pMSSM pMSSM From <u>http://arxiv.org/pdf/1212.4</u> 8 8 $BR(B_{s} \rightarrow \mu\mu)$ BR(B →μμ) 6 6 2 mininteression 1000 1500 -20000 2000 500 2000 2500 M₃ (GeV) μ (GeV) 10×10* 10^{×10[×]} pMSSM pMSSM 8 $BR(B_{s}\!\to\!\!\mu\mu)$ BR(B →µµ) 6 2 -10 -5 0 5 20 10 40 A, (TeV) tan β 10^{×10} pMSSM pMSSM 10 8 BR(B_s→μμ) BR(B →μμ) 6 500 1000 1500 20 Same in the second second second Statuteday. 1000 1500 m_i (GeV) 1000 2000 500 M_A (GeV)

2500

2000

60

∂p_T/∂N_{PV} [GeV]

0.6

0.4

0.2

-0.2

ATLAS Simulation

anti-k, LCW R=0.4

Before any correction

2

2.5

3

3.5

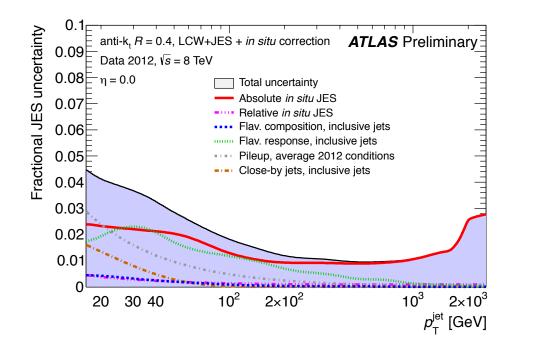
----- After $\rho \times A$ subtraction

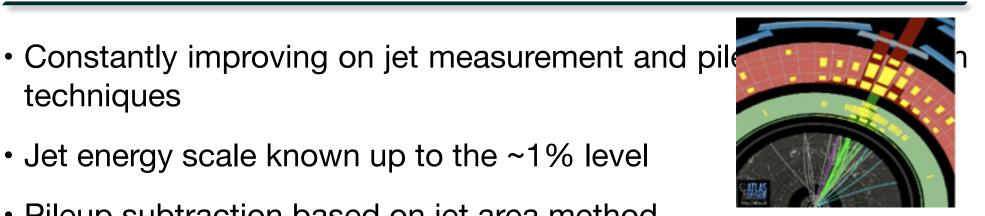
F. . . . I . . . I . . . I . . . I . . . I 1.5

-0.4 - After residual correction

1

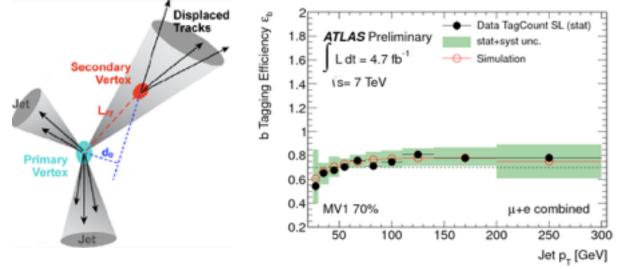
0.5

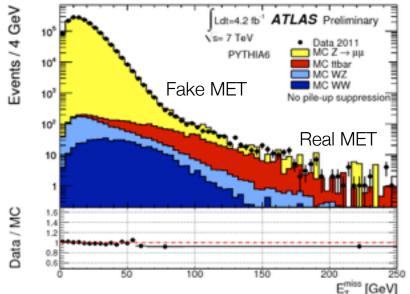

0.8 – Pythia Dijets 2012


h

Jet measurement

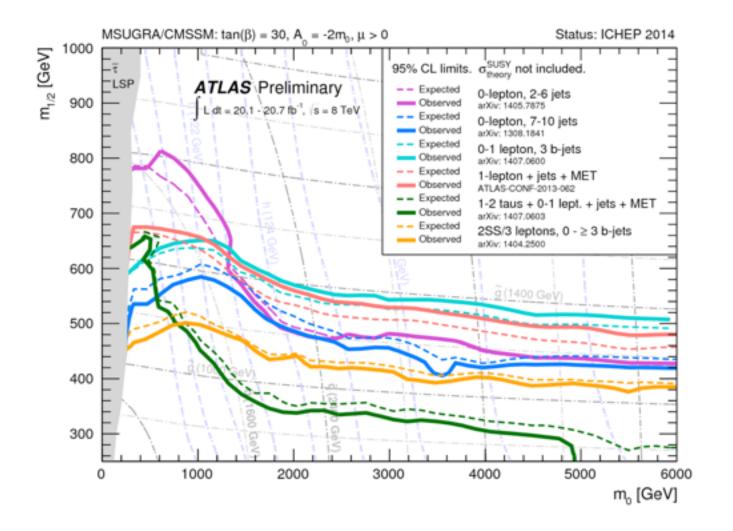
techniques


- Jet energy scale known up to the ~1% level
- Pileup subtraction based on jet area method



- Missing transverse momentum and b-tagging
 - Missing ET (ETmiss) reconstructed from final state objects:
 - each with a dedicated calibration.

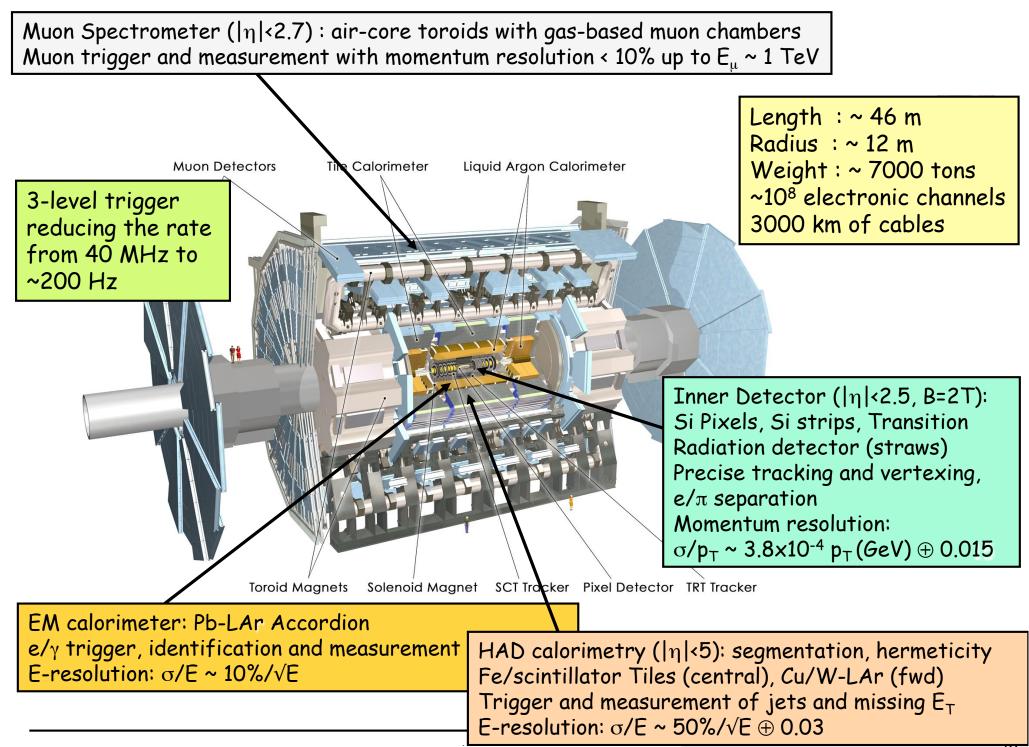
 b-tagging: neural network algorithm combining informations about secondary vertex displacement and impact



strong production

MSUGRA/CMSSM

University of Sussex



Publications

University of Sussex

All results available at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u> 2012 data (8 TeV)

Short Title of Paper	Date	√s (TeV)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
Non-pointing, delayed photons [LLP, GMSB] NEW	09/2014	8	20.3	1409.5542	Link (+ data)	Submitted to PRD
0 leptons + mono-jet/c-jets + Etmiss [Stop in charm+LSP] NEW	07/2014	8	20.3	1407.0608	Link (+ data)	Phys. Rev. D. 90, 052008 (2014)
1 lepton + 4(1 b-)jets + Etmiss [Medium / heavy stop] NEW	07/2014	8	20.3	1407.0583	Link	Submitted to JHEP
1-2 taus + 0-1 leptons + jets + Etmiss [GMSB] NEW	07/2014	8	20.3	1407.0603	Link (+ data)	JHEP 09 (2014) 103
0-1 leptons + >=3 b-jets + Etmiss [3rd gen. squarks] NEW	07/2014	8	20.1	1407.0600	Link (+ data)	JHEP 10 (2014) 024
2 taus + Etmiss [EW production] NEW	07/2014	8	20.3	1407.0350	Link (+ data)	JHEP 10 (2014) 096
Stop constraints from precise ttbar cross-section [Light stop]	06/2014	7,8	4.6, 20.3	1406.5375	Link (+ data)	Accepted by EPJC
0 lepton + 6 (2 b-)jets + Etmiss [Heavy stop]	06/2014	8	20.3	1406.1122	Link (+data)	JHEP 09 (2014) 015
0 leptons + 2-6 jets + Etmiss [Incl. squarks & gluinos]	05/2014	8	20.3	1405.7875	Link (+ data)	JHEP 09 (2014) 176
4 leptons + Etmiss [EW production, RPV]	05/2014	8	20.3	1405.5086	Link (+ data)	Phys. Rev. D. 90, 052001 (2014)
2 same-sign / 3 -leptons + 0-3 b-jets + Etmiss [Incl. squarks & gluinos]	04/2014	8	20.3	1404.2500	Link (+ data)	JHEP 06 (2014) 035
2 leptons (e,mu) + Etmiss [chargino/neutralino/slepton]	03/2014	8	20.3	1403.5294	Link (+ data)	JHEP 05 (2014) 071
Z + b-jet + jets + Etmiss [Stop in GMSB, stop2]	03/2014	8	20.3	1403.5222	Link (+ data)	Eur. Phys. J. C (2014) 74:2883
2 leptons + (b)jets + Etmiss [stop]	03/2014	8	20.3	1403.4853	Link (+ data)	JHEP 06 (2014) 124
3 leptons (e,mu,tau) + Etmiss [chargino/neutralino]	02/2014	8	20.3	1402.7029	Link (+ data)	JHEP 04 (2014)169
Long-lived stopped gluino or squark R-hadrons [Split-SUSY]	10/2013	7+8	27.9	1310.6584	Link	Phys. Rev. D 88, 112003 (2013)
Disappearing track + jets + Etmiss [Direct long-lived charginos - AMSB]	10/2013	8	20.3	1310.3675	Link (+ data)	Phys. Rev. D 88, 112006 (2013)
0 leptons + 2 b-jets + Etmiss [Sbottom/stop]	08/2013	8	20.1	1308.2631	Link (+ data)	JHEP 10 (2013) 189
0 leptons + >=7-10 jets + Etmiss [Incl. squarks & gluinos]	08/2013	8	20.3	1308.1841	Link (+ data)	JHEP 10 (2013) 130

