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Introduction 

• The workshop was held in Edinburgh, 15-17 June 2011, 
organized by NESC and e-Science Institute   

• The agenda  

• https://indico.cern.ch/conferenceDisplay.py?confId=141309 

• The scope of the workshop:  

• Recent developments in computing and software architectures 

• Effective use of many-core and Graphics Processing Unit (GPU) 
architectures in a distributed computing environment 

• Utilising emerging I/O and storage technologies 

• Distributed data management in HEP 

• Tools for software performance optimization 

• In my talk I will focus on the first two items ... 
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Current software challenges 

• Addressing these challenges quickly and effectively is not easy due to complexity and 
development model of the HEP software ...    
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Migration to 64-bit Multi-core CPUs Dealing with pile-up 

+ Provides larger address space 

+ Faster execution by 10-30% 

 But the problem is that 64-bit 

 running causes 30-50%  

increase in memory consumption  

Event-level parallelism 

N application/machine = N cores 

Applications are independent 

Memory = N cores x Memory/App 

x2 if HyperThreading is ON    

 

More memory is needed but even 
2GB/core could be prohibitively expensive 

Memory crisis ? 

Talks by D. Rousseau (for ATLAS) and G.Eulisse (for CMS) 

Increasing LHC luminosity gives  

multiple pp interaction pile-ups 

<mu> ~20, more in 2012 Run 

CPU time scales non-linearly,  

increase dominated by tracking   

 

CPU time vs. N 
of pp interactions 



ATLAS software at a glance 

• ATLAS reconstruction framework – 
Athena runs ~100 algorithms / event 

• The software consists of 2000 packages: 

• LOC in millions: C++ : 4.0, Python : 1.4, 
Fortran : 0.1, Java : 0.1 

• Contributions from 1000 developers in the last 
3 years, typically 25 updates/day 

• Who are the ATLAS developers ? : 

• Physicists with various degree of s/w expertise  

• A few s/w experts 

• It would be unrealistic to expect cutting 
edge quality in all 2000 packages 

• Performance improvement via: 

• Core software (i.e. AthenaMP) 

• “Magic bullet” (compilation options) 

• Fixing hot spots in CPU time / memory 
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Using multi-core CPUs in ATLAS 
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• Basic idea of AthenaMP (Multi-Process): split events from one file (LB) into batches, 
process one batch / CPU core, reduce memory footprint by Copy-On-Write technique :  

 Fork worker processes which see the same initial physical memory,  

 New allocations and touched pages created in private memory space 



AthenaMP experience and plans 

• Tests have shown that 

 AthenaMP saves ~0.5Gb of RAM per process 

 Hyper-Threading increases event throughput by 25% 

 pinning a process to a core to prevent Linux scheduler from moving it between cores – 
gives 20% improvement in event processing rate 

• Using AthenaMP in production on Grid : 

 not quite there yet – obviously requires the whole node running the same applications  

 requires an external framework for output files merging 

 In production in 3-6 months, “Whole-node job submission” Task Force is working on it 
– similar TF in CMS 
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• Test results: 

 Using reconstruction with 64bit software on 4 CPU, 8 
core/CPU 2GHz AMD Opteron(tm) 6128 

 Shared memory per child proc. ~ 700MB 

 Private memory per child proc. ~ 375MB 

 Total memory used by 32 child procs. : 13GB 

 Total memory used by 32 separate jobs: 34GB 

• Huge memory saving – but requires whole-node 
running while on Grid !  

Using multi-core CPUs in CMS 
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Giulio Eulisse, FNAL 

• Approach similar to AthenaMP: use C-o-W 

 Most (all?) of the common const data / code can actually be 
brought in the application very early 

 If you fork at that point, the kernel is actually smart enough 
to share the common data memory pages between parent 
and the children 

 The kernel “un-shares” the memory pages only when one of 
the processes writes to them: copy-on-write (CoW) 

 New allocations (i.e. event data) end up in non-shared pages 

Code 

Event-specific data 

1.2Gb 

CMS offline s/w 
memory budget 

Read-only data 
geometry, 
magnetic field, 
conditions and 
alignment, 
physics processes, etc 
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Conclusion and outlook from CMS  
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• Forking/C-o-W proves to be effective and simple for being considered 
a good strategy for the short-medium term 

• Deployment of whole-node scheduling is a key to exploiting multi-
core CPUs on Grid 

 The new processing model requires a new model in computing resources 
allocation 

 Experiments need to have control over a large quantum of resources as 
multi-core aware jobs require scheduling of multiple cores at the same 
time 

• The effort which would be required to have module-level 
parallelism is not worth the actual gain in the current CMS offline 
software given the decomposition of algorithms: 

 Basically, the problem is dependence of the algorithms which means they can be 
run only sequentially 

Giulio Eulisse, FNAL 



News from the industry 
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• were presented by 

• Roger Goff, Dell LHC Team 

• Alistair Hart, CRAY Exascale Research Initiative 



Co-processor architectures 
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CPUs+co-processors (GPU) => “New Era of Processor Performance” 

Roger Goff, Dell LHC Team 

(c) AMD 



NVIDIA Fermi Architecture 

• 3 billion of transistors, 512 cores 

• arranged into 32-core streaming 
multiprocessors (SM) @ 1.3 GHz 

• L2 (768K) and L1 (64K/SM) caches  

• 16 SMs – up to 16 parallel programs 
can be run concurrently 

• NVIDIA provides CUDA programming 
environment for software developers   

11/29 

• Each core in a SM has 1K 
of 32-bit registers, shares 
up to 48K with other cores    

32-bit Integer  
ALU with 64-bit  
extensions 
Full IEEE-754  
32-/64-bit  
precision  
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AMD/ATI Cypress Architecture 
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• Firestream 9350/70 GPUs 

• 1600 FP cores arranged into 
20 multiprocessors 

• Performance leader: 2.6 TF 
single-precision 

• The best FLOPS/watt and 
FLOPS/price ratio 

• Not supported by NVidia CUDA  

• developers should use OpenCL 
SDK (originally from Apple)  
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Baseline “Knights Ferry” architecture:  
32 Cores @ 1.2 GHz 

 4 threads/core, 128 total parallel 
threads 

 32KB i-cache, 32KB d-cache 

 256KB coherent L2 cache (8MB total) 

 512bit vector units Double precision 

FLOPS/clock 

Emerging Intel MIC Architecture 
• “Knights Ferry” Architecture is based   
on Many Integrated Cores (MIC) 
approach: 

• many cores with many threads per core 

• MIC core ~ Fermi multiprocessor but exec. 
model is closer to MIMD 

• Standard IA programming and memory 
model   

•  No actual hardware available yet  

•“Knights Corner”: 1st production MIC 
co-processor in 2nd half of 2012  

•  Knowns: 

• 50+ cores 

• 22nm manufacturing process 

•  Unknowns: 

• Core frequency, size of on-board 
memory, ECC support 
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Co-processor Comparison 

 
AMD 

Firestream
 NVIDIA Fermi  Intel Knights Ferry

 Intel Knights 

Corner Speculation

 Intel Knights Corner 

Speculation2

Cores 1600 512 32*4 threads/ core = 128 50*4 threads/ core = 200 64*4 threads/ core = 256

Core Frequency 700/ 825 MHz 1.3 GHz 1.2 GHz 1.2 GHz 2 GHz

Thread Granularity fine fine coarse coarse coarse

Single Precision 

Floating Point 

Capability GFLOPs

2000/ 2640 1024 614 960 2048

Double Precision 

Floating Point 

Capability GFLOPs

400/ 528 512 307 480 1024

GDDR5 RAM 2/ 4 GB 3-6 GB 1-2 GB ? ?

 L1 

cache/ processor

64KB (16KB Shmem, 

48KB L1 or 48KB 

Shmem, 16KB L1)

64KB (32KB icache, 32KB 

dcache)

64KB (32KB icache, 32KB 

dcache)

64KB (32KB icache, 32KB 

dcache)

 L2 

cache/ processor
768KB shared L2

8MB coherent total 

(256KB/ core)

12MB coherent total 

(256KB/ core)

16MB coherent total 

(256KB/ core)

 programming 

model
CUDA kernels posix threads posix threads posix threads

 virtual memory no yes yes yes

 memory shared 

with host
no no no no

Software
OpenCL, 

DirectCompute

C, C++, CUDA, 

OpenCL, 

DirectCompute

C, C++, FORTRAN, 

OpenMP, CUDA, OpenCL, 

DirectCompute

C, C++, FORTRAN, 

OpenMP, CUDA, OpenCL, 

DirectCompute

C, C++, FORTRAN, 

OpenMP, CUDA, OpenCL, 

DirectCompute

The best of what you can buy now 
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Co-processor Adoption 

• Commercial adoption: 

• Oil & Gas/seismic data processing 

• Financial services 

• Ray tracing 

• Molecular dynamics 

• Commercial applications: MATLAB, ANSYS 

• Barriers to adoption 

• Lack of parallel programming skills  

• Immature software development environment & standards 

• CUDA vs. OpenCL vs. OpenMP 

• Waiting for the compiler or libraries to abstract the accelerator 

• Uncertainty of benefit vs. effort 

• Amdahl’s law is still the law!  Maximum Speedup =  

• Huge investment in current codes 



Message from the industry 
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1. Co-processors are here to stay, but their architectures will continue 
to evolve. 

2. Programing tools will get easier to use and will further integrate co-
processing technology.   

3. Further abstraction of the underlying co-processor hardware is 
necessary to achieve broad adoption. 

4. Processors from Intel and AMD will integrate co-processors before 
the end of the decade. 

5. Preparing applications for extreme parallelism will enable users to 
get the most out of future systems. 

 

Roger Goff, DELL 



GPUs and Exascale HPC 

• The new Cray XK6 based on  

 Next generation NVIDIA Fermi X2090 GPU 

 512 cores @ 1.3 GHz, 6GB of memory 

 AMD Interlagos CPUs (up to 16 cores) 

 Gray Gemini interconnect 

• XK6 includes Cray Unified x86/GPU programming 
environment based on OpenMP directives: 

• Cray Compiler (C/C++, Fortran), performance analysis tools   

• Longer term, GPUs are template for Exascale HPC 
architectures : 

 The goal is to achieve 1 EFlops by 2018 

 It will require 10 Millions of processing elements (PE) 

 Power consumption scales non-linearly – US DoE requirement is 
to keep it below 20 MW for the Exascale supercomputer 

• We need lower-power, higher-performing PE, e.g. GPUs 
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GPUs for HEP: Success story 

• A few examples of using GPUs to accelerate HEP 
applications were presented and discussed 
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Accelerating ATLAS tracking 

• Reconstruction time depends on hit multiplicity 
in the detector  

• Track finding has worst combinatorial behaviour 
(as expected) and starts to dominate already at 
modest multiplicities 

• Flowchart of ATLAS track reconstruction: 
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Christian Schmitt, Johannes Mattmann, Uni. Mainz 

total/2 

tracking 

Formation of hits/ 
Clustering 

Local information only 
low-medium CPU load 

Seed finding using 
Pix/SCT spacepoints  

Track finding 
(extension) 

Ambiguity solving 

Information in small regions 
high number of combinations 

Information in small regions 
Geometry and Field access 

Non-local information 
medium/high CPU load 

Final track fit  Local information, detailed 
Geometry/Material/Field 

• High locality of data 

• High arithmetical 
density 

• Ideal for GPU-based 
parallelization ! 

 



Christian Schmitt, Johannes Mattmann, Uni. Mainz 

GPU 

Fast ATLAS tracking using GPUs 
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• The first results: 

 Test setup: Xeon W3550 (3GHz) CPU vs. 
NVIDIA GTX460 (Fermi) 1GB video-card 

 GTX460 is a commodity video-card (~£100)  

• 10x speed-up on tt-bar MC events 

• Bigger speed-up factor for heavy-ion 
events reported. 

NVIDIA GTX460 card  
(heat-sink and cooler removed) 

• Work on-going to port the offline track 
finding algorithm to make use of GPUs   

• First version that implements the seed 
finding using spacepoints is ready: 

• each combination of three 
spacepoints is tested by an 
individual GPU thread 

• cuts on pT, impact parameter, etc. 
are applied 

 



GPUs for ATLAS Trigger 

• R&D programme for ATLAS higher luminosity upgrade 
includes High-Level Trigger (HLT) software and hardware 

• In general, various upgrade approaches are possible: 

• using more/better CPUs for HLT farms 

• vectorization of HLT software for better utilization of CPUs 

• using GPUs for time-critical parts of HLT code which are suitable for 
GPU-based parallelization 

• The GPU-based option is possible since ATLAS HLT uses 
dedicated farms which can be, in principle, equipped with 
GPU cards. 

• To study this feasibility a few GPU-accelerated algorithms 
for ATLAS Level 2 Trigger (LVL2) tracking have been 
developed.     
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Tracking at LVL2 Trigger 
• LVL2 operates independently on Region-of-Interests (RoI) 

identified by the Level 1 Trigger: 

Cross-section view 

Level 1 Trigger 

RoI 

Data preparation 

data requests 
ATLAS detector 

raw data  

spacepoints  

LVL2 

track finding by Hough transform 

combinatorial track finding 

track candidates 

Tracks 

Kalman track fit 

interaction vertex  
finding: 

ATLAS z-axis 

p p 
Hough transform 
in                  
space 

)/1,( 0 Tp
*z
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GPU-based Level 2 Data Preparation 

• ATLAS Pixel and SCT are modular 
detectors: thousands of modules being read 
out in parallel 

• Readout handled in groups by Read Out 
Drivers (ROD) and Read Out Buffers (ROB) 

• Output data encoded into bytestream 
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Jacob Howard, University of Oxford 
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• Three levels of parallelization: 

• Region-Of-Interest 

• ROB fragment 

• Data words in ROB frag. 

• Parallelization at the data word 
level is the most suitable for 
GPUs  



Current Results: speed-up factor for 

•  CPU: Westmere 2.4 GHz vs. 

•  GPU: NVIDIA Fermi C2050 

MC Data, 10^34 pile-up  Speed-up 

pp min-bias 2.1 

Z->mu mu 3.2 

tt-bar 3.2 

Future Work 

• Further parallelize bytestream decoding 

to the word level (option B) 

• Add GPU-based Pixel clusterization 

• Combine with GPU-based SCT data 

preparation 

Current CPU Implementation: 

Target GPU Implementations: 

All Data Processed Sequentially 

… 

Decoder 

All Data Processed in Parallel by Many Word Decoders 

word 

ROB 

Fragment 

ROB 

Fragment 

ROB 

Fragment 

ROB 

Fragment 

RoIs RoIs 

RoI RoI Decoder 

GPU implementation based on option A: data 

parallelized at the ROB fragment level only 

Jacob Howard, University of Oxford 

… RoI 

Pixel Bytestream Decoding on GPUs 

word word word word word word word 

… 

Dec 

one GPU thread / ROB frag. one GPU thread / word 

Decoder Dec Dec Dec 

A B 
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GPU-based Trigger Algorithms 
• The GPU-based IdScan zFinder  

(Chris Jones, Andy Washbrook, 
University of Edinburgh) 

• Primary interaction vertex finding 
using histogramming (Hough trf.) 

• Highly parallel task – ideal for GPUs 

• Concurrent execution – more than 
one RoI can be processed 
simultaneously 

• 35x speed-up achieved on Fermi GPU        
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• LVL2 Track fitting on GPU 
(Dmitry Emeliyanov, RAL) 

• Track-level parallelism: a 
GPU thread per track – all 
tracks are fitted in parallel 

• 12x speed-up for 3000 
tracks – GPU track fitting 
seems promising for the 
Kalman filter-based track 
finding in offline code        

CPU 

GPU 

LVL2 track fitter 

IdScan zFinder 

x12 

x35 
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Trigger Track Fitter Optimization 

• A set of optimizations has been applied: 

0
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5

6

7

0 500 1000 1500 2000 2500 3000

1 2 3 4 5GPU time, ms 

Number of tracks 

1. Original code 

2. 32 threads/block 

3. Reduced memory 
footprint (fewer 
local variables, 
upper-triangular 
covariance matrix 

4. Track state (cov. + 
parameters) stored 
in fast (shared) 
memory 

5. Jacobian in shared 
memory to speed-
up calculations  

• The optimized code gives ~20x speed-up w.r.t. the CPU 

• 1.5 microsecond / track has been achieved ! 

Track state 
Extrapolation 

Update 

x2.5 

Dmitry Emeliyanov, RAL 
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Integration with ATLAS software 

• So far our research have been focused mainly on the 
algorithms: 

– bits of existing code ported to a standalone (i.e. Athena-free) 
framework and then re-implemented for a GPU using NVIDIA CUDA 

– That’s fine if we want to assess feasibility of GPU-based approach but 
this is not the complete solution 

• Two main problems need to be solved: 

– How the GPU-accelerated code can be used directly in Athena ? 

– For more than one Athena application / CPU how the GPU can be 
shared between applications ?   

• important issue for hosts with multi-core CPUs  

• Clearly, the issue of integrating GPUs and existing (legacy) 
HEP software is not ATLAS-specific and must be addressed 
properly – but surprisingly few ideas on the market … 
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Algorithm 

“Client-server” architecture 

• At RAL, we have developed a “Client-server” solution: Compute server 
based on NVIDIA CUDA, and CUDA-free clients 

Algorithm 

AthenaComputeSvc 

App 0, Core 0 

findTracks 

data 

tracks 

ComputeServer 

Core N 

GPU 

CPU threads 

Kernel 1 

Kernel 2 

findTracksOnGPU 

App 1, Core 1 

data 
tracks 

…OnGPU 

• High-level abstraction of GPU via AthenaComputeSvc which 

• provides a set of high-level routines: e.g. track finding – ported CPU-intense 
code which could benefit from GPU acceleration 

• ComputeSvc talks to the ComputeServer which, in turn, starts the 
corresponding parallel code (CUDA kernel) on GPU 
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Conclusion 

• Hardware architectures are evolving quickly: 

 CPUs with 16-20 cores – next year. 

 GPUs seem to be the solution-of-choice for the HPC 

 Integration of CPU and GPU cores on one die: 

‒ in fact, it’s already available – AMD Fusion CPUs 

• HEP software is trying to keep up with this progress: 

 Main focus now is on memory usage optimization 

 Integration of GPUs will require changes in the existing software 
architectures 
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Backup slides 
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CPU+GPU integrated solution 
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• 1U system from SuperMicro: 2 12-core AMD Opterons + 2 ATI 
FireStream 9370 GPUs, 1.4 kW PSU. Peak ~ 5.5 TFLOPS 



GPU Programming Model 

• Example: matrix sum C=A+B with 
(9x16) matrices 

• executed by a grid of thread blocks 

• 12 blocks with 12 threads each 

• each block runs on its own SM 

• each thread works with a unique (i,j) : 

• i = threadId.x+blockId.x*blockSize.x 

• j = threadId.y+blockId.y*blockSize.y  

(0,0) (0,1) (0,2) (0,3) 

(1,0) (1,1) (1,2) (1,3) 

(2,0) (2,1) (2,2) (2,3) 

thread    
 (0,0) 

thread    
 (0,1) 

thread    
 (0,2) 

thread    
 (0,3) 

thread    
 (1,0) 

thread    
 (1,1) 

thread    
 (1,2) 

thread    
 (1,3) 

thread    
 (2,0) 

thread    
 (2,1) 

thread    
 (2,2) 

thread    
 (2,3) 

Grid 

Block (2,2) 

•   GPUs are designed for massive parallel SIMT calculations 
•   Software needs to be written in  
    blocks (“kernels”) of instructions 
•   Kernels are executed in individual  
    threads 
•   Threads can communicate via shared      
    memory if needed 
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How to program a GPU ? 

33/34 PPD Seminar, 05/10/2011 

 hardware-generated indices to address data 

code for parallel execution 

 send data to GPU 

 run parallel code on GPU 

retrieve results from GPU 



GPU Programming Issues 

• GPU memory can have very different latency: 

• on-card memory: huge (up to 6GB) but takes ~200-400 cycles to get 
data from 

• registers/shared memory: fast but small and must be used sparingly 

• High arithmetic density required:  

• a number of operations per data volume transferred to GPU 

• Flow control: 

• data-dependent branching incurs performance penalty as SM 
evaluates each branch sequentially 

• synchronization between threads on the same SM is possible but also 
results in performance losses   

• Development a good algorithm for a GPU is not trivial but 

• a lot of examples in CUDA SDK – very helpful for grasping basic 
concepts    
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