
PPD Seminar, 05/10/2011

Future computing in particle physics:
a report from a workshop

Dmitry Emeliyanov (RAL PPD)

1/29

Introduction

• The workshop was held in Edinburgh, 15-17 June 2011,
organized by NESC and e-Science Institute

• The agenda

• https://indico.cern.ch/conferenceDisplay.py?confId=141309

• The scope of the workshop:

• Recent developments in computing and software architectures

• Effective use of many-core and Graphics Processing Unit (GPU)
architectures in a distributed computing environment

• Utilising emerging I/O and storage technologies

• Distributed data management in HEP

• Tools for software performance optimization

• In my talk I will focus on the first two items ...

2/29 PPD Seminar, 05/10/2011

https://indico.cern.ch/conferenceDisplay.py?confId=141309

Current software challenges

• Addressing these challenges quickly and effectively is not easy due to complexity and
development model of the HEP software ...

3/29 PPD Seminar, 05/10/2011

Migration to 64-bit Multi-core CPUs Dealing with pile-up

+ Provides larger address space

+ Faster execution by 10-30%

 But the problem is that 64-bit

 running causes 30-50%

increase in memory consumption

Event-level parallelism

N application/machine = N cores

Applications are independent

Memory = N cores x Memory/App

x2 if HyperThreading is ON

More memory is needed but even
2GB/core could be prohibitively expensive

Memory crisis ?

Talks by D. Rousseau (for ATLAS) and G.Eulisse (for CMS)

Increasing LHC luminosity gives

multiple pp interaction pile-ups

<mu> ~20, more in 2012 Run

CPU time scales non-linearly,

increase dominated by tracking

CPU time vs. N
of pp interactions

ATLAS software at a glance

• ATLAS reconstruction framework –
Athena runs ~100 algorithms / event

• The software consists of 2000 packages:

• LOC in millions: C++ : 4.0, Python : 1.4,
Fortran : 0.1, Java : 0.1

• Contributions from 1000 developers in the last
3 years, typically 25 updates/day

• Who are the ATLAS developers ? :

• Physicists with various degree of s/w expertise

• A few s/w experts

• It would be unrealistic to expect cutting
edge quality in all 2000 packages

• Performance improvement via:

• Core software (i.e. AthenaMP)

• “Magic bullet” (compilation options)

• Fixing hot spots in CPU time / memory

4/29 PPD Seminar, 05/10/2011

David Rousseau, LAL/CERN

Using multi-core CPUs in ATLAS

5/29 PPD Seminar, 05/10/2011

Paolo Calafiura, LBNL

end

Input
Files

Output
Files

OS-fork merge

firstEvents

c
o
re

-
0

WORKER 0:

Events: [0, 5, 8,…96]

c
o
re

-
1

WORKER 1:

Events: [1, 7, 10,…,99]

c
o
re

-
2

WORKER 2:

Events: [3, 6, 9,…,98]

c
o
re

-
3

WORKER 3:

Events: [2, 4, 12,…,97]

output-

tmp

files

output

tmp

files

output

tmp

files

output

tmp

files

init

Maximize the

shared

memory!

PARALLEL: workers event loop SERIAL:
parent-init-fork

SERIAL:
 parent-merge and finalize

• Basic idea of AthenaMP (Multi-Process): split events from one file (LB) into batches,
process one batch / CPU core, reduce memory footprint by Copy-On-Write technique :

 Fork worker processes which see the same initial physical memory,

 New allocations and touched pages created in private memory space

AthenaMP experience and plans

• Tests have shown that

 AthenaMP saves ~0.5Gb of RAM per process

 Hyper-Threading increases event throughput by 25%

 pinning a process to a core to prevent Linux scheduler from moving it between cores –
gives 20% improvement in event processing rate

• Using AthenaMP in production on Grid :

 not quite there yet – obviously requires the whole node running the same applications

 requires an external framework for output files merging

 In production in 3-6 months, “Whole-node job submission” Task Force is working on it
– similar TF in CMS

6/29 PPD Seminar, 05/10/2011

Andrew Washbrook, Edinburgh Univ.

• Test results:

 Using reconstruction with 64bit software on 4 CPU, 8
core/CPU 2GHz AMD Opteron(tm) 6128

 Shared memory per child proc. ~ 700MB

 Private memory per child proc. ~ 375MB

 Total memory used by 32 child procs. : 13GB

 Total memory used by 32 separate jobs: 34GB

• Huge memory saving – but requires whole-node
running while on Grid !

Using multi-core CPUs in CMS

7/29 PPD Seminar, 05/10/2011

Giulio Eulisse, FNAL

• Approach similar to AthenaMP: use C-o-W

 Most (all?) of the common const data / code can actually be
brought in the application very early

 If you fork at that point, the kernel is actually smart enough
to share the common data memory pages between parent
and the children

 The kernel “un-shares” the memory pages only when one of
the processes writes to them: copy-on-write (CoW)

 New allocations (i.e. event data) end up in non-shared pages

Code

Event-specific data

1.2Gb

CMS offline s/w
memory budget

Read-only data
geometry,
magnetic field,
conditions and
alignment,
physics processes, etc

C
o
m

m
o
n
 d

a
ta

Conclusion and outlook from CMS

8/29 PPD Seminar, 05/10/2011

• Forking/C-o-W proves to be effective and simple for being considered
a good strategy for the short-medium term

• Deployment of whole-node scheduling is a key to exploiting multi-
core CPUs on Grid

 The new processing model requires a new model in computing resources
allocation

 Experiments need to have control over a large quantum of resources as
multi-core aware jobs require scheduling of multiple cores at the same
time

• The effort which would be required to have module-level
parallelism is not worth the actual gain in the current CMS offline
software given the decomposition of algorithms:

 Basically, the problem is dependence of the algorithms which means they can be
run only sequentially

Giulio Eulisse, FNAL

News from the industry

9/29 PPD Seminar, 05/10/2011

• were presented by

• Roger Goff, Dell LHC Team

• Alistair Hart, CRAY Exascale Research Initiative

Co-processor architectures

10/29 PPD Seminar, 05/10/2011

CPUs+co-processors (GPU) => “New Era of Processor Performance”

Roger Goff, Dell LHC Team

(c) AMD

NVIDIA Fermi Architecture

• 3 billion of transistors, 512 cores

• arranged into 32-core streaming
multiprocessors (SM) @ 1.3 GHz

• L2 (768K) and L1 (64K/SM) caches

• 16 SMs – up to 16 parallel programs
can be run concurrently

• NVIDIA provides CUDA programming
environment for software developers

11/29

• Each core in a SM has 1K
of 32-bit registers, shares
up to 48K with other cores

32-bit Integer
ALU with 64-bit
extensions
Full IEEE-754
32-/64-bit
precision

PPD Seminar, 05/10/2011

AMD/ATI Cypress Architecture

12/29 PPD Seminar, 05/10/2011

• Firestream 9350/70 GPUs

• 1600 FP cores arranged into
20 multiprocessors

• Performance leader: 2.6 TF
single-precision

• The best FLOPS/watt and
FLOPS/price ratio

• Not supported by NVidia CUDA

• developers should use OpenCL
SDK (originally from Apple)

13/29 PPD Seminar, 05/10/2011

Baseline “Knights Ferry” architecture:
32 Cores @ 1.2 GHz

 4 threads/core, 128 total parallel
threads

 32KB i-cache, 32KB d-cache

 256KB coherent L2 cache (8MB total)

 512bit vector units Double precision

FLOPS/clock

Emerging Intel MIC Architecture
• “Knights Ferry” Architecture is based
on Many Integrated Cores (MIC)
approach:

• many cores with many threads per core

• MIC core ~ Fermi multiprocessor but exec.
model is closer to MIMD

• Standard IA programming and memory
model

• No actual hardware available yet

•“Knights Corner”: 1st production MIC
co-processor in 2nd half of 2012

• Knowns:

• 50+ cores

• 22nm manufacturing process

• Unknowns:

• Core frequency, size of on-board
memory, ECC support

14/29 PPD Seminar, 05/10/2011

Co-processor Comparison

AMD

Firestream
 NVIDIA Fermi Intel Knights Ferry

 Intel Knights

Corner Speculation

 Intel Knights Corner

Speculation2

Cores 1600 512 32*4 threads/ core = 128 50*4 threads/ core = 200 64*4 threads/ core = 256

Core Frequency 700/ 825 MHz 1.3 GHz 1.2 GHz 1.2 GHz 2 GHz

Thread Granularity fine fine coarse coarse coarse

Single Precision

Floating Point

Capability GFLOPs

2000/ 2640 1024 614 960 2048

Double Precision

Floating Point

Capability GFLOPs

400/ 528 512 307 480 1024

GDDR5 RAM 2/ 4 GB 3-6 GB 1-2 GB ? ?

 L1

cache/ processor

64KB (16KB Shmem,

48KB L1 or 48KB

Shmem, 16KB L1)

64KB (32KB icache, 32KB

dcache)

64KB (32KB icache, 32KB

dcache)

64KB (32KB icache, 32KB

dcache)

 L2

cache/ processor
768KB shared L2

8MB coherent total

(256KB/ core)

12MB coherent total

(256KB/ core)

16MB coherent total

(256KB/ core)

 programming

model
CUDA kernels posix threads posix threads posix threads

 virtual memory no yes yes yes

 memory shared

with host
no no no no

Software
OpenCL,

DirectCompute

C, C++, CUDA,

OpenCL,

DirectCompute

C, C++, FORTRAN,

OpenMP, CUDA, OpenCL,

DirectCompute

C, C++, FORTRAN,

OpenMP, CUDA, OpenCL,

DirectCompute

C, C++, FORTRAN,

OpenMP, CUDA, OpenCL,

DirectCompute

The best of what you can buy now

15/29 PPD Seminar, 05/10/2011

Co-processor Adoption

• Commercial adoption:

• Oil & Gas/seismic data processing

• Financial services

• Ray tracing

• Molecular dynamics

• Commercial applications: MATLAB, ANSYS

• Barriers to adoption

• Lack of parallel programming skills

• Immature software development environment & standards

• CUDA vs. OpenCL vs. OpenMP

• Waiting for the compiler or libraries to abstract the accelerator

• Uncertainty of benefit vs. effort

• Amdahl’s law is still the law! Maximum Speedup =

• Huge investment in current codes

Message from the industry

16/29 PPD Seminar, 05/10/2011

1. Co-processors are here to stay, but their architectures will continue
to evolve.

2. Programing tools will get easier to use and will further integrate co-
processing technology.

3. Further abstraction of the underlying co-processor hardware is
necessary to achieve broad adoption.

4. Processors from Intel and AMD will integrate co-processors before
the end of the decade.

5. Preparing applications for extreme parallelism will enable users to
get the most out of future systems.

Roger Goff, DELL

GPUs and Exascale HPC

• The new Cray XK6 based on

 Next generation NVIDIA Fermi X2090 GPU

 512 cores @ 1.3 GHz, 6GB of memory

 AMD Interlagos CPUs (up to 16 cores)

 Gray Gemini interconnect

• XK6 includes Cray Unified x86/GPU programming
environment based on OpenMP directives:

• Cray Compiler (C/C++, Fortran), performance analysis tools

• Longer term, GPUs are template for Exascale HPC
architectures :

 The goal is to achieve 1 EFlops by 2018

 It will require 10 Millions of processing elements (PE)

 Power consumption scales non-linearly – US DoE requirement is
to keep it below 20 MW for the Exascale supercomputer

• We need lower-power, higher-performing PE, e.g. GPUs

17/29 PPD Seminar, 05/10/2011

Alistair Hart, CRAY

GPUs for HEP: Success story

• A few examples of using GPUs to accelerate HEP
applications were presented and discussed

18/29 PPD Seminar, 05/10/2011

Accelerating ATLAS tracking

• Reconstruction time depends on hit multiplicity
in the detector

• Track finding has worst combinatorial behaviour
(as expected) and starts to dominate already at
modest multiplicities

• Flowchart of ATLAS track reconstruction:

19/29 PPD Seminar, 05/10/2011

Christian Schmitt, Johannes Mattmann, Uni. Mainz

total/2

tracking

Formation of hits/
Clustering

Local information only
low-medium CPU load

Seed finding using
Pix/SCT spacepoints

Track finding
(extension)

Ambiguity solving

Information in small regions
high number of combinations

Information in small regions
Geometry and Field access

Non-local information
medium/high CPU load

Final track fit Local information, detailed
Geometry/Material/Field

• High locality of data

• High arithmetical
density

• Ideal for GPU-based
parallelization !

Christian Schmitt, Johannes Mattmann, Uni. Mainz

GPU

Fast ATLAS tracking using GPUs

PPD Seminar, 05/10/2011 20/29

• The first results:

 Test setup: Xeon W3550 (3GHz) CPU vs.
NVIDIA GTX460 (Fermi) 1GB video-card

 GTX460 is a commodity video-card (~£100)

• 10x speed-up on tt-bar MC events

• Bigger speed-up factor for heavy-ion
events reported.

NVIDIA GTX460 card
(heat-sink and cooler removed)

• Work on-going to port the offline track
finding algorithm to make use of GPUs

• First version that implements the seed
finding using spacepoints is ready:

• each combination of three
spacepoints is tested by an
individual GPU thread

• cuts on pT, impact parameter, etc.
are applied

GPUs for ATLAS Trigger

• R&D programme for ATLAS higher luminosity upgrade
includes High-Level Trigger (HLT) software and hardware

• In general, various upgrade approaches are possible:

• using more/better CPUs for HLT farms

• vectorization of HLT software for better utilization of CPUs

• using GPUs for time-critical parts of HLT code which are suitable for
GPU-based parallelization

• The GPU-based option is possible since ATLAS HLT uses
dedicated farms which can be, in principle, equipped with
GPU cards.

• To study this feasibility a few GPU-accelerated algorithms
for ATLAS Level 2 Trigger (LVL2) tracking have been
developed.

PPD Seminar, 05/10/2011 21/29

Tracking at LVL2 Trigger
• LVL2 operates independently on Region-of-Interests (RoI)

identified by the Level 1 Trigger:

Cross-section view

Level 1 Trigger

RoI

Data preparation

data requests
ATLAS detector

raw data

spacepoints

LVL2

track finding by Hough transform

combinatorial track finding

track candidates

Tracks

Kalman track fit

interaction vertex
finding:

ATLAS z-axis

p p
Hough transform
in
space

)/1,(0 Tp
*z

PPD Seminar, 05/10/2011 22/29

GPU-based Level 2 Data Preparation

• ATLAS Pixel and SCT are modular
detectors: thousands of modules being read
out in parallel

• Readout handled in groups by Read Out
Drivers (ROD) and Read Out Buffers (ROB)

• Output data encoded into bytestream

23/29 PPD Seminar, 05/10/2011

Jacob Howard, University of Oxford

ROB Fragment

Byte stream

Read Out Buffer

Read Out Buffer

Module Module ...

st
a
rt

h
it

..
.

h
it

st
o
p

st
a
rt

ROB Fragment

st
a
rt

h
it

..
.

h
it

st
o
p

st
a
rt

Read Out Buffer

Read Out Buffer

Module Module ...

• Three levels of parallelization:

• Region-Of-Interest

• ROB fragment

• Data words in ROB frag.

• Parallelization at the data word
level is the most suitable for
GPUs

Current Results: speed-up factor for

• CPU: Westmere 2.4 GHz vs.

• GPU: NVIDIA Fermi C2050

MC Data, 10^34 pile-up Speed-up

pp min-bias 2.1

Z->mu mu 3.2

tt-bar 3.2

Future Work

• Further parallelize bytestream decoding

to the word level (option B)

• Add GPU-based Pixel clusterization

• Combine with GPU-based SCT data

preparation

Current CPU Implementation:

Target GPU Implementations:

All Data Processed Sequentially

…

Decoder

All Data Processed in Parallel by Many Word Decoders

word

ROB

Fragment

ROB

Fragment

ROB

Fragment

ROB

Fragment

RoIs RoIs

RoI RoI Decoder

GPU implementation based on option A: data

parallelized at the ROB fragment level only

Jacob Howard, University of Oxford

… RoI

Pixel Bytestream Decoding on GPUs

word word word word word word word

…

Dec

one GPU thread / ROB frag. one GPU thread / word

Decoder Dec Dec Dec

A B

PPD Seminar, 05/10/2011 24/29

GPU-based Trigger Algorithms
• The GPU-based IdScan zFinder

(Chris Jones, Andy Washbrook,
University of Edinburgh)

• Primary interaction vertex finding
using histogramming (Hough trf.)

• Highly parallel task – ideal for GPUs

• Concurrent execution – more than
one RoI can be processed
simultaneously

• 35x speed-up achieved on Fermi GPU
0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500

tracks / event

ti
m

e
/e

v
e

n
t,

 m
s

Fermi 2050

Westmere 2.4

0.11
0.36 0.265 0.317

0.134

7.13

0.759 0.613
0.329 0.204

0

1

2

3

4

5

6

7

8

CPU Tesla Fermi Tesla (stream) Fermi (stream)

T
o

ta
l

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

Low lumi

High lumi

• LVL2 Track fitting on GPU
(Dmitry Emeliyanov, RAL)

• Track-level parallelism: a
GPU thread per track – all
tracks are fitted in parallel

• 12x speed-up for 3000
tracks – GPU track fitting
seems promising for the
Kalman filter-based track
finding in offline code

CPU

GPU

LVL2 track fitter

IdScan zFinder

x12

x35

PPD Seminar, 05/10/2011 25/29

Trigger Track Fitter Optimization

• A set of optimizations has been applied:

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000

1 2 3 4 5GPU time, ms

Number of tracks

1. Original code

2. 32 threads/block

3. Reduced memory
footprint (fewer
local variables,
upper-triangular
covariance matrix

4. Track state (cov. +
parameters) stored
in fast (shared)
memory

5. Jacobian in shared
memory to speed-
up calculations

• The optimized code gives ~20x speed-up w.r.t. the CPU

• 1.5 microsecond / track has been achieved !

Track state
Extrapolation

Update

x2.5

Dmitry Emeliyanov, RAL

PPD Seminar, 05/10/2011 26/29

Integration with ATLAS software

• So far our research have been focused mainly on the
algorithms:

– bits of existing code ported to a standalone (i.e. Athena-free)
framework and then re-implemented for a GPU using NVIDIA CUDA

– That’s fine if we want to assess feasibility of GPU-based approach but
this is not the complete solution

• Two main problems need to be solved:

– How the GPU-accelerated code can be used directly in Athena ?

– For more than one Athena application / CPU how the GPU can be
shared between applications ?

• important issue for hosts with multi-core CPUs

• Clearly, the issue of integrating GPUs and existing (legacy)
HEP software is not ATLAS-specific and must be addressed
properly – but surprisingly few ideas on the market …

PPD Seminar, 05/10/2011 27/29

Algorithm

“Client-server” architecture

• At RAL, we have developed a “Client-server” solution: Compute server
based on NVIDIA CUDA, and CUDA-free clients

Algorithm

AthenaComputeSvc

App 0, Core 0

findTracks

data

tracks

ComputeServer

Core N

GPU

CPU threads

Kernel 1

Kernel 2

findTracksOnGPU

App 1, Core 1

data
tracks

…OnGPU

• High-level abstraction of GPU via AthenaComputeSvc which

• provides a set of high-level routines: e.g. track finding – ported CPU-intense
code which could benefit from GPU acceleration

• ComputeSvc talks to the ComputeServer which, in turn, starts the
corresponding parallel code (CUDA kernel) on GPU

PPD Seminar, 05/10/2011 28/29

Conclusion

• Hardware architectures are evolving quickly:

 CPUs with 16-20 cores – next year.

 GPUs seem to be the solution-of-choice for the HPC

 Integration of CPU and GPU cores on one die:

‒ in fact, it’s already available – AMD Fusion CPUs

• HEP software is trying to keep up with this progress:

 Main focus now is on memory usage optimization

 Integration of GPUs will require changes in the existing software
architectures

29/29 PPD Seminar, 05/10/2011

Backup slides

30/34 PPD Seminar, 05/10/2011

CPU+GPU integrated solution

31/34 PPD Seminar, 05/10/2011

• 1U system from SuperMicro: 2 12-core AMD Opterons + 2 ATI
FireStream 9370 GPUs, 1.4 kW PSU. Peak ~ 5.5 TFLOPS

GPU Programming Model

• Example: matrix sum C=A+B with
(9x16) matrices

• executed by a grid of thread blocks

• 12 blocks with 12 threads each

• each block runs on its own SM

• each thread works with a unique (i,j) :

• i = threadId.x+blockId.x*blockSize.x

• j = threadId.y+blockId.y*blockSize.y

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

thread
 (0,0)

thread
 (0,1)

thread
 (0,2)

thread
 (0,3)

thread
 (1,0)

thread
 (1,1)

thread
 (1,2)

thread
 (1,3)

thread
 (2,0)

thread
 (2,1)

thread
 (2,2)

thread
 (2,3)

Grid

Block (2,2)

• GPUs are designed for massive parallel SIMT calculations
• Software needs to be written in
 blocks (“kernels”) of instructions
• Kernels are executed in individual
 threads
• Threads can communicate via shared
 memory if needed

PPD Seminar, 05/10/2011 32/34

How to program a GPU ?

33/34 PPD Seminar, 05/10/2011

 hardware-generated indices to address data

code for parallel execution

 send data to GPU

 run parallel code on GPU

retrieve results from GPU

GPU Programming Issues

• GPU memory can have very different latency:

• on-card memory: huge (up to 6GB) but takes ~200-400 cycles to get
data from

• registers/shared memory: fast but small and must be used sparingly

• High arithmetic density required:

• a number of operations per data volume transferred to GPU

• Flow control:

• data-dependent branching incurs performance penalty as SM
evaluates each branch sequentially

• synchronization between threads on the same SM is possible but also
results in performance losses

• Development a good algorithm for a GPU is not trivial but

• a lot of examples in CUDA SDK – very helpful for grasping basic
concepts

PPD Seminar, 05/10/2011 34/34

