Doubly Charged Higgs Bosons at Hadron Colliders

Andrew Akeroyd

NExT Institute, SHEP, University of Southampton

- Higgs Triplet Model (HTM) and doubly charged scalars $(H^{\pm\pm})$
- Leptonic decay channels $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$
- Production of $H^{\pm\pm}$ at hadron colliders
- Searches for $H^{\pm\pm}$ at Tevatron and simulations at LHC

Collaborators: Mayumi Aoki (Kanazawa), Hiroaki Sugiyama (Ritsumeikan), Cheng-Wei Chiang (Nat.Cent.Univ

Naveen Gaur (Delhi): Phys.Rev.D72,035011 (2005), Phys.Rev.D77,075010 (2008), arXiv:1009.2780 (JHEP)

Seminar at RAL, 02 November 2010

The Higgs boson (1964) of the Standard Model is a spinless,

neutral particle with a vacuum expectation value.

Still undiscovered If exists, how many Higgs bosons?

Classify Higgs bosons by their electric charge

- Neutral: h^0 (SM 1967), H^0 , A^0 (2HDM 1973, MSSM 1980...)
- Singly Charged: H^{\pm} (2HDM, MSSM..)
- Doubly Charged: $H^{\pm\pm}$ (this talk)

These three types have received considerable theoretical/experimental attention

(Order of priority: neutral > singly charged > doubly charged)

Models with Doubly Charged Higgs Bosons, $H^{\pm\pm}$

Motivation \rightarrow neutrino mass generation

Scalar triplets (isospin I = 1) and scalar singlets (I = 0)

- Higgs Triplet Model : I = 1, Y = 2 (tree-level mass for ν)
- LR Symmetric Model : I = 1, Y = 2 (tree-level mass for ν)
- Zee-Babu Model: I = 0, Y = 4 (radiative mass for ν)

All of these models are in textbooks ("classic models")

I will discuss the Higgs Triplet Model

Konetschny/Kummer 77, Schechter/Valle 80, Cheng/Li 80

Neutrino Mass and Mixing

Strong evidence for neutrino masses and mixings from both terrestrial and celestial sources

$$V_{\text{MNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mixing angles are being probed by oscillation experiments:

i) Atmospheric angle is close to maximal: $\sin^2 \theta_{23} \sim 0.5$

- ii) Solar angle is sizeable, but not maximal: $\sin^2 \theta_{12} \sim 0.3$
- iii) Reactor angle is not measured: $\sin^2 \theta_{13} < 0.03$

iv) Mass differences small: $\Delta M^2_{atm} \sim 10^{-3} eV^2$, $\Delta M^2_{sol} \sim 10^{-5} eV^2$

Higgs Triplet Model can accommodate these values

Large Hadron Collider

- LHC (at CERN) is colliding protons at $\sqrt{s} = 7$ TeV
- From 2013(?) it will operate at $\sqrt{s} = 14$ TeV
- Highest energy collider ever built
- Search for Higgs bosons of high (highest?) priority
- Detectors ATLAS and CMS optimised for Higgs boson search
- Fermilab Tevatron ($\sqrt{s} = 2 \text{ TeV}$) is still operating
- An era of intense competition until year 2014?
- A great time to study the phenomenology of Higgs bosons

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I = 1, Y = 2 Higgs triplet

$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

Higgs potential invariant under $SU(2)_L \otimes U(1)_Y$: $m^2 < 0$, $M^2_\Delta > 0$

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\mathrm{Tr}(\Delta^{\dagger}\Delta)$$

$$+\lambda_i (\text{quartic terms}) + \frac{1}{\sqrt{2}} \mu (\Phi^T i \tau_2 \Delta^{\dagger} \Phi) + h.c$$

Triplet vacuum expectation value: $|<\delta^0>=v_{\Delta}\sim \mu v^2/M_{\Delta}^2$

 $(v_{\Delta} < 5 \text{ GeV to keep }
ho = (M_Z^2 \cos^2 heta_W)/M_W^2 \sim 1)$

Neutrino mass in Higgs Triplet Model (HTM)

No additional (heavy) neutrinos: $\mathcal{L} = h_{ij}\psi_{iL}^T Ci\tau_2 \Delta \psi_{jL} + h.c$ $\psi_{iL}^T = (\nu_i, \ell_i); i = e, \mu, \tau$

Neutrino mass from triplet-lepton-lepton coupling (h_{ij}) :

$$h_{ij}\left[\sqrt{2}\,\bar{\ell}_i^c P_L \ell_j \delta^{++} + (\bar{\ell}_i^c P_L \nu_j + \bar{\ell}_j^c P_L \nu_i)\delta^{+} - \sqrt{2}\,\bar{\nu}_i^c P_L \nu_j \delta^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}_{ij}^{\nu} \sim v_{\Delta} h_{ij}$

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

(m_i =neutrino masses; $V_{\text{PMNS}} = V_{\ell}^{\dagger} V_{\nu}$; take $V_{\ell} = I$ and $V_{\nu} = V_{\text{PMNS}}$)

Decay channels for $H^{\pm\pm}$ and H^{\pm}

$\mathsf{BR}(H^{\pm\pm} \to W^{\pm}W^{\pm})$ and $\mathsf{BR}(H^{\pm\pm} \to \ell_i^{\pm}\ell_j^{\pm})$ against triplet vev Han 07, Asaka/Hikasa 94

Branching ratios of $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$

 $BR(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \text{ determined by } h_{ij}$ $\Gamma(H^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim \frac{m_{H^{\pm\pm}}}{8\pi} |h_{ij}|^2$

In HTM h_{ij} is directly related to neutrino mass matrix

$$h_{ij} = \frac{1}{\sqrt{2}v_{\Delta}} V_{\text{PMNS}} diag(m_1, m_2, m_3) V_{\text{PMNS}}^T$$

Prediction for BR $(H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_j^{\pm})$ determined by: Chun, Lee, Park 03

- Neutrino mass matrix parameters (masses, angles, phases)
- Neutrino mass hierarchy: normal $(m_3 > m_2 > m_1)$ or inverted

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}), BR(H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm})]$

Limits on h_{ij}

Presence of $H^{\pm\pm}$ would lead to lepton-flavour-violating decays Many limits exist for h_{ij} (assuming $m_{H^{\pm\pm}} < 1 \text{ TeV}$): Cuypers/Davidson 98 • BR($\mu \rightarrow eee$) $< 10^{-12} \rightarrow |h_{\mu e}h_{ee}| < 10^{-7}$ 1988; no forthcoming experiment • BR($\tau \rightarrow \ell_i \ell_j \ell_k$) $< 10^{-8} \rightarrow |h_{\tau i} h_{jk}| < 10^{-4}$ Limits from ongoing B factories • BR($\mu \rightarrow e\gamma$) $< 10^{-11} \rightarrow \sum_i |h_{\mu i} h_{ei}| < 10^{-6}$ sensitivity to BR~ 10⁻¹³ from 2011 All constraints can be respected with $|h_{ij}| < 10^{-2}$ or 10^{-3} These decays provide valuable probes of virtual effects of $H^{\pm\pm}$

Masses of the Higgs bosons in the HTM as a function of $\mu ~(\sim v_{\Delta} M_{\Delta}^2/v^2)$

The triplet scalars tend to be degenerate, and $H^{\pm\pm}$ is the lightest for $\lambda_4 > 0$

Production of $H^{\pm\pm}$ at Hadron Colliders (Tevatron and LHC)

Production of $H^{\pm\pm}$ at Hadron Colliders

First searches at a Hadron collider in 2003 CDF,D0

$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3\mu} + g' B_{\mu} \right) + h.c$$

- $\sigma_{H^{++}H^{--}}$ is a simple function of $m_{H^{\pm\pm}}$ Barger 82, Gunion 89, Raidal 96
- $\sigma_{H^{++}H^{--}}$ has no dependence on h_{ij}

Strategy of most recent search by Tevatron

- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- Four leptons $(\ell^+\ell^+\ell^-\ell^-)$ from pair production of $H^{++}H^{--}$
- For $H^{\pm\pm} \to e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$, sufficient to search for

three leptons of high momentum with two leptons

- having the same charge
- \rightarrow Six distinct signatures

 $e^{\pm}e^{\pm}e^{\mp}$, $e^{\pm}e^{\pm}\mu^{\mp}$, $e^{\pm}\mu^{\pm}e^{\mp}$, $e^{\pm}\mu^{\pm}\mu^{\mp}$, $\mu^{\pm}\mu^{\pm}e^{\mp}$ and $\mu^{\pm}\mu^{\pm}\mu^{\mp}$

- Only $\mu^{\pm}\mu^{\pm}\mu^{\mp}$ has been searched for (1.1 fb⁻¹ of data)
- Tevatron currently has 7 fb $^{-1}$, and expects 9 \rightarrow 12 fb $^{-1}$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Selection	Preselection	Isolation	$\Delta \phi < 2.5$	Like sign	Third muon
	S1	S 2	S 3	S4	S 5
$Z/\gamma^* \to \mu^+\mu^-$	69181 ± 4642	58264 ± 3910	4936 ± 333	5.3 ± 1.6	< 0.01
Multijet	4492 ± 120	194 ± 18	18 ± 2	6.3 ± 0.8	0.2 ± 0.1
$Z/\gamma^* \to \tau^+ \tau^-$	328 ± 25	269 ± 21	20 ± 3	< 0.01	< 0.01
$t\overline{t}$	38 ± 3	20 ± 1	14 ± 1	0.03 ± 0.01	< 0.01
WW	40 ± 3	34 ± 2	20 ± 1	< 0.01	< 0.01
WZ	19 ± 1	16 ± 1	11 ± 1	2.95 ± 0.20	1.62 ± 0.11
ZZ	10 ± 1	9 ± 1	5 ± 1	0.63 ± 0.05	0.47 ± 0.03
Total background	74108 ± 4644	58806 ± 3910	5024 ± 333	15.2 ± 1.8	2.3 ± 0.2
$M_{H^{\pm\pm}}=$ 140 GeV	20.5 ± 2.7	18.5 ± 2.4	16.3 ± 2.1	11.6 ± 1.5	10.1 ± 1.3
Data	72974	58763	4558	16	3

Signal is defined as $\mu^+\mu^+\mu^-$ or $\mu^-\mu^-\mu^+$

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Two same-sign $\mu^{\pm}\mu^{\pm}$ after cuts S1 and S4

Two same-sign $\mu^{\pm}\mu^{\pm}$ and third μ^{\mp}

Tevatron search (D0, 2007) for $p\overline{p} \rightarrow H^{++}H^{--}$, $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$

Mass limit $m_{H^{\pm\pm}} > 150$ GeV for BR $(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = 100\%$

Current status of Tevatron searches

	ee	$e\mu$	$\mu\mu$	e au	μau	au au
21	>133 GeV	> 113 GeV	> 136 GeV	×	×	X
31			> 150 GeV	>114 GeV	> 112 GeV	
41				>114 GeV	> 112 GeV	

- > 150 GeV limit uses 1.1 fb⁻¹
- Other limits use 0.24 fb⁻¹ or 0.35 fb⁻¹
- \bullet Run II has accumulated \sim 7 fb^{-1}
- Expect up to 12 fb⁻¹ by 2011
- Sensitivity to $m_{H^{\pm\pm}} \sim 250~{\rm GeV}$ in $ee, e\mu, \mu\mu$ channels

Single $H^{\pm\pm}$ production via $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

Ongoing searches assume $q\overline{q} \rightarrow \gamma, Z \rightarrow H^{++}H^{--}$, but...

$$\mathcal{L} = ig\left[\left(\partial^{\mu}H^{+}\right)H^{--} - \left(\partial^{\mu}H^{--}\right)H^{+}\right]W^{+}_{\mu} + h.c.$$

- $\sigma_{H^{\pm\pm}H^{\mp}}$ is a function of $m_{H^{\pm\pm}}$ and $m_{H^{\pm}}$ Barger 82, Dion 98
- Similar magnitude to $\sigma(p\overline{p} \to H^{++}H^{--})$ for $m_{H^{\pm\pm}} \sim m_{H^{\pm}}$

Impact of
$$q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$$

Current searches are already sensitive to $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}!$

- $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search is sensitive to $H^{\pm\pm}H^{\mp}$ for $H^{\pm} \to \ell^{\pm}\nu$
- \rightarrow Define inclusive cross section for $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ search:

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \rightarrow H^{++}H^{--}) + 2\sigma(p\overline{p} \rightarrow H^{++}H^{-})$$
 Aga, Aoki 05

- \bullet Enables larger values of $m_{H^{\pm\pm}}$ to be probed in $\ell^\pm\ell^\pm\ell^\mp$ channels
- Not yet included in searches at the Tevatron

Inclusive single $H^{\pm\pm}$ production at Tevatron AGA, Aoki 05

$$\sigma_{H^{\pm\pm}} = \sigma(p\overline{p} \to H^{++}H^{--}) + 2\sigma(p\overline{p} \to H^{++}H^{-})$$

Mass limit $m_{H^{\pm\pm}} > 150$ GeV at Tevatron would strengthen to $m_{H^{\pm\pm}} > 180$ GeV

Summary for $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

- $\sigma(q\overline{q}' \to H^{\pm\pm}H^{\mp})$ can be as large as $\sigma(q\overline{q} \to H^{++}H^{--})$
- Enhances the discovery potential for $H^{\pm\pm}$ in 3ℓ search

channels, and strengthens the lower limit on $m_{H^{\pm\pm}}$

- Now receiving attention as a main production mechanism for $H^{\pm\pm}$
- Recently simulated at LHC Han et al 08, Del Aguila et al 08
- Not included in Pythia (frequently used by experimentalists)
- Convince Tevatron to include it in next search for $H^{\pm\pm}$?

Light $H^{\pm\pm}$ and decay $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ at LHC

Sizeable Event Numbers for $H^{\pm\pm}$:

$m_{H^{\pm\pm}}$ (GeV)	$N_{pair}~({ m 30~fb^{-1}})$	$N_{pair}~({ m 300~fb^{-1}})$	$N_{incl-sing}$ (300 fb ⁻¹)
200	3000	30000	84000
300	600	6000	16800
400	180	1800	5000

Simulations by Azuelos et al 05, Hebbeker et al 06, Hektor et al 07, Han et al 07

- Discovery for $m_{H^{\pm\pm}} <$ 400 GeV with 1 fb⁻¹
- Precise measurements of $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm})$ possible for $\ell = e, \mu$
- Sensitivity to $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) \sim 1\%$ for $\ell = e, \mu$

Inclusive single $H^{\pm\pm}$ production at LHC AGA, Aoki 05

$$\sigma_{H^{\pm\pm}} = \sigma(pp \to H^{++}H^{--}) + \sigma(pp \to H^{++}H^{-}) + \sigma(pp \to H^{--}H^{+})$$

Optimising discovery potential of $H^{\pm\pm}$ at LHC

 \rightarrow Signature which is sensitive to both production mechanisms

$$q\overline{q} \rightarrow H^{++}H^{--}$$
 and $qq' \rightarrow H^{\pm\pm}H^{\mp}$

 4ℓ signature: only $H^{++}H^{--}$ contributes

• CMS (2007): $\mu^+\mu^-\mu^-$

• ATLAS (2005):
$$4\ell \ (\ell = e, \mu)$$

 3ℓ $(\ell^{\pm}\ell^{\pm}\ell^{\mp})$ signature: both $H^{++}H^{--}$ and $H^{\pm\pm}H^{\mp}$ contribute

• Del Aguila/Aguilar-Saavedra 2008 : EXACTIY 3 $\ell~(\ell=e,\mu)$

Additional leptons vetoed \rightarrow |lose contribution from $q\overline{q} \rightarrow H^{++}H^{--}$

• AGA, Chiang, Gaur 2010: $\geq 3\ell$ ($\ell = e, \mu$) (as done at Tevatron)

Signal and background for $\geq 3\ell$ ($\ell = e, \mu$) signature AGA, Chiang, Gaur 1

	Backgrounds						Signal $(M_{H^{\pm\pm}})$		
Cuts ↓	WZ	WWW	ZZ	$t\overline{t}$	Zbb	Ztt	Wtt	200	600
Pre-selection	591.7	3.5	203.6	159.9	57.7	212.5	9.7	1570.4	17.6
$ m_{\ell^+\ell^-}-m_Z >$ 10 GeV	50.9	2.7	12.1	113.2	0.9	33.4	7.4	1397.8	17.3
$H_T > 300 { m GeV}$	7.5	1.1	1.6	8.9	0	17	3.4	1351.1	17.3
$H_T > 500 { m GeV}$	1.7	0.3	0.4	0.9	0	3.2	0.6	796.2	17.3
S								77.4	5

• Background and Signal events surviving the cuts for

at least 3 leptons ($\ell = e, \mu$) in the final state

- Assume $BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = BR(H^{\pm\pm} \rightarrow \ell^{\pm}\nu) = 100\%$
- $\mathcal{L} = 10 \text{ fb}^{-1} \text{ and } \sqrt{s} = 14 \text{ TeV}$

• H_T is the total transverse energy of the ($\geq 3\ell$) leptons (defined to include missing E_T from $H^{\pm} \rightarrow \ell^{\pm} \nu$)

$\geq 3\ell$ signature from $pp \to H^{++}H^{--}$ and $pp \to H^{\pm\pm}H^{\mp}$, with $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ ($\ell = e, \mu$)

Left panel: Same-sign dilepton invariant mass distribution before Z veto and H_T cuts Right panel: Integrated luminosity required for 5σ discovery in $\geq 3\ell$ and 4ℓ channels Possible future topics?

Encourage CMS/ATLAS to simulate $\geq 3\ell$ ($\ell = e, \mu$) signature in order to improve sensitivity to $m_{H^{\pm\pm}}$

- Compare discovery potential of Tevatron and low energy run ($\sqrt{s} = 7$ TeV) of LHC
- Exclusive final states (e.g. $e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$)
- Decay channels $H^{\pm\pm} \to e^{\pm} \tau^{\pm}, \mu^{\pm} \tau^{\pm}, \tau^{\pm} \tau^{\pm}$ might be dominant
- After discovery: separate the contributions from

$$q\overline{q} \rightarrow H^{++}H^{--}$$
 and $q\overline{q}' \rightarrow H^{\pm\pm}H^{\mp}$

Conclusions

- Doubly charged Higgs bosons appear in various models of neutrino mass generation
- Higgs Triplet Model generates neutrino mass $h_{ij}v_{\Delta}$
- $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ a distinctive signal with BRs determined by h_{ij}
- $H^{\pm\pm}$ produced via $pp \to H^{\pm\pm}H^{\pm--}$ and $pp \to H^{\pm\pm}H^{\mp}$
- Three-lepton signal $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ optimal channel for detection
- Much to simulate in the phenomenology of $H^{\pm\pm}$

Higgs boson spectrum

The HTM has 7 Higgs bosons: $H^{\pm\pm}, H^{\pm}, H^{0}, A^{0}, h^{0}$

- $H^{\pm\pm}$ is purely triplet: $H^{\pm\pm} \equiv \delta^{\pm\pm}$
- $H^{\pm}, H^{0}, A^{0}, h^{0}$ are mixtures of doublet (ϕ) and triplet (δ) fields
- Mixing $\sim v_{\Delta}/v$ and small ($v_{\Delta}/v < 0.03$)
- h^0 plays role of *SM Higgs boson* (essentially I = 1/2 doublet)
- H^{\pm}, H^{0}, A^{0} are *dominantly* composed of triplet fields
- Masses of $H^{\pm\pm}, H^{\pm}, H^{0}, A^{0}$ close to degenerate $\sim M_{\Delta}$
- For $H^{\pm\pm}$, H^{\pm} in range at LHC require $M_{\Delta} < 1$ TeV