g-2 of the muon: touchstone of the Standard Model, keyhole to New Physics?

THOMAS TEUBNER

in collab. w. Kaoru Hagiwara, Ruofan Liao, Alan Martin and Daisuke Nomura

- I. Testing Quantum Field Theory at the highest precision
- II. The Standard Model prediction of $(g-2)_{\mu}$
- III. SM vs. BNL: A sign for New Physics?

IV. The 'running coupling' $lpha_{
m QED}(q^2)$ and the indirect determination of the Higgs mass

V. The next round

I. Testing QFT at the highest precision

Definitions:

• g relates the magnetic moment $\vec{\mu}$ of a particle to its spin \vec{s} :

$$\vec{\mu} = g \frac{e}{2m} \vec{s}$$
 (*m* the particle's mass)

• Dirac equation $\rightsquigarrow g = 2$, but *quantum corrections* lead to the anomalous magnetic moment: $a \equiv (g-2)/2$

I. Testing QFT at the highest precision

What happens in the $(g-2)_{\mu}$ experiment:

- Muon in an uniform magnetic field \vec{B} : circular motion with cyclotron frequency $\vec{\omega}_c = e\vec{B}/m$ and spin precession with $\vec{\omega}_s = ge\vec{B}/2m$.
 - $\rightarrow\,$ Direct measurement of the anomalous precession frequency

$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = \frac{e}{m} a_\mu \vec{B}$$

via the time spectrum of the electrons from the muon decays $\mu^- \rightarrow \nu_\mu e^- \bar{\nu}_e$, and the \vec{B} field via NMR magnetometers.

I. Testing QFT at the highest precision

• Theory prediction in QED at one loop (Schwinger '48):

$$a \equiv (g-2)/2 = \alpha/(2\pi) \simeq 11\ 614\ 097 \cdot 10^{-10}$$

• Experimentally: One of the most precisely measured quantities

$$a_{\mu}^{\exp} = 11\ 659\ 208\ (6) \cdot 10^{-10}$$
 [0.5 ppm] BNL 2004
 $a_{e}^{\exp} = 11\ 596\ 521.8073\ (0.0028) \cdot 10^{-10}$ [0.24 ppb] Gabrielse 2008

- $a_e \sim 2000$ times more precise than a_μ (tests QED, measures α) \rightarrow But: Sensitivity to *New Physics* at energy scale $\Lambda_{\rm NP}$ $a^{\rm NP} \propto m^2 / \Lambda_{\rm NP}^2$ \rightarrow muon wins by $m_\mu^2 / m_e^2 \sim 43000$ (chirality flip)
- IF $a_{\mu}^{\text{EXP}} a_{\mu}^{\text{SM}} \sim 25 \cdot 10^{-10} \iff \text{test physics up to scale } \Lambda_{\text{NP}} \sim 2 \text{ TeV}$ \hookrightarrow establish or constrain *NP*

- One electron quantum cyclotron, using quantum-jump spectroscopy and quantum nondemolition measurements of cyclotron and spin levels.
- Penning trap cavity inhibits spontaneous emission; one-particle self-excited oscillator.
- 15 times better than measurements from 1987, now 0.28 ppt for $g_e/2$.
- Resulting determination of α is 20 times better than other methods (measuring transition frequencies using atomic interferometers).
- a_{τ} : SM prediction $a_{\tau} = 117721(5) \times 10^{-8}$ Eidelman et al. (2007) but too short lived for precession exp.; DELPHI at LEP2: $(e^+e^- \rightarrow e^+e^-\tau^+\tau^-) \rightsquigarrow -0.052 < a_{\tau} < 0.013$

II. The Standard Model prediction of $(g-2)_{\mu}$

The different contributions in the SM:
$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}}$$

✓ QED:

Laporta+Remiddi, Kinoshita et al., Passera

* Known to 4–loop (891 diagrams); 5–loop (12672 diagrams) estimates, ongoing effort

* Large compared to EW and hadronic, but very small error (from 4–, 5–loop, α)

 \rightarrow Recent update from Passera, Kinoshita+Nio, details depend on input α , 5–loop est.

 $a_{\mu}^{\text{QED}} = (116\ 584\ 718.08 \pm 0.15) \cdot 10^{-11}$

* Further efforts ongoing; no big surprises so far for a_{μ} , but recent changes in a_e .

II. The Standard Model prediction of $(g-2)_{\mu}$

The different contributions in the SM:
$$a_\mu~=~a_\mu^{
m QED}+a_\mu^{
m EW}+a_\mu^{
m had}$$

✓ EW:

Czarnecki et al., Knecht et al.

* Electro-Weak 1–loop diagrams:

- * Known to 2–loop (1650 diagrams; first EW 2–loop)
- * Quite small and small error, but 2-loop relevant; results well checked

 \rightarrow Czarnecki+Marciano+Vainshtein:

 $a_{\mu}^{\text{EW}} = (154 \pm 2) \cdot 10^{-11}$ $\left[a_{\mu}^{\text{QED}} = (116\ 584\ 718.08 \pm 0.15) \cdot 10^{-11}\right]$

* Subleading but sizeable; uncertainty completely dominates the error of $a_{\mu}^{\rm SM}$

× 'Blob' cannot be calculated in perturbative QCD [pQCD applicable only for large virtualities]

• L-by-L: Model calculations with bumpy history:

< Nov. 2001: $(-85 \pm 25) \cdot 10^{-11}$ with the 'famous' sign error of several groups

> Nov. 2001: $(+80 \pm 40) \cdot 10^{-11}$ Nyffeler [\rightsquigarrow much discussed $2.6 \sigma \rightarrow 1.6 \sigma$]

> Dec. 2003: $(136 \pm 25) \cdot 10^{-11}$ Melnikov+Vainshtein, or $(11 \pm 4) \cdot 10^{-10}$ Bijnens+Prades [Conservative estimate based on comparison of different works]

Recently: Convergence of different model calculations:

 \rightarrow recent compilation from Prades, de Rafael, Vainshtein: $a_{\mu}^{\text{L-by-L}} = (10.5 \pm 2.6) \cdot 10^{-10}$

• L-by-L: Model calculations with bumpy history:

 \rightsquigarrow recent compilation from Prades, de Rafael, Vainshtein: $a_{\mu}^{L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$

- → Help from Lattice QCD? ('first principles' numerical simulation, *i.e.* non-perturbative) Two groups work with different approaches; promising but early stage, very challenging
- \rightarrow Situation already better than it seems:
 - * different groups have agreement in leading $N_{
 m colour}$ parts
 - * differences in (negative!) subleading contributions ~> modelling
 - * Upper bound can be defended; but more work needed, otherwise limiting factor!

• L-by-L: Stay for now with $a_{\mu}^{
m L-by-L} = (10.5\pm2.6)\cdot10^{-10}$

► LO, NLO: all low energy hadronic resonances contribute through $\sqrt[\gamma]{}$

- pQCD not applicable; Lattice QCD results (still) not precise enough; but:
- ullet Vacuum Polarisation contributions from exp. $\sigma(e^+e^- o \gamma^* o hadrons)$ data

(or from $au
ightarrow
u_{ au} + hadrons$ spectral functions, see below)

via *dispersion integral* (based on analyticity and unitarity):

$$a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$

 \rightarrow Weighting with kernel K towards smallest energies

 $\rightarrow \sigma^0$ means without Vacuum Polarisation $\dot{\gamma}_{\rm QED}(q^2)$, i.e. w/out running $\alpha_{\rm QED}(q^2)$

 \rightarrow Data input for $\sigma_{had}^0(s)$ from the experiment CMD-2 at Novosibirsk: (Still the most precise $e^+e^- \rightarrow \pi^+\pi^-$ data with only 0.6% systematic error)

Figure thanks to Simon Eidelman

E_{c.m.}, MeV

How to get the hadronic vac.-pol. contributions with precision: HLMNT

- Lowest energies most important, i.e. the hadronic channels 2π, 3π, KK, 4π, 5π, etc. Have to sum ~ 24 exclusive channels and inclusive data for √s above 1.43 2 GeV to get total σ_{had} with high precision.
 - \rightarrow Use of *state-of-the-art* perturbative QCD only above ~ 11 GeV.

How to get the hadronic vac.-pol. contributions with precision: HLMNT

- Lowest energies most important, i.e. the hadronic channels 2π , 3π , KK, 4π , 5π , etc. Have to sum ~ 24 exclusive channels and inclusive data for \sqrt{s} above 1.43 2 GeV to get total σ_{had} with high precision.
- In each channel: Combine data from many different experiments:
 → nontrivial w.r.t. error analysis / correlations / different energy ranges:
 - use e.g. non-linear $\chi^2_{
 m min}$ fit (and do error analysis with covariance matrix)

How to get the hadronic vac.-pol. contributions with precision: HLMNT

- Lowest energies most important, i.e. the hadronic channels 2π, 3π, KK, 4π, 5π, etc. Have to sum ~ 24 exclusive channels and inclusive data for √s above 1.43 - 2 GeV to get total σ_{had} with high precision.
- In each channel: Combine data from many different experiments: use e.g. non-linear χ^2_{\min} fit (and do error analysis with covariance matrix)
- Before averaging and \sum : Check Radiative Corrections of each data set:
 - → Additional final state photons must be fully *included/estimated*
 - \rightarrow For σ^0 , running $\alpha(q^2)$ effects must be *subtracted*

(otherwise double-counting with $a_{\mu}^{\text{had},\text{NLO}}$)

 \rightarrow but effects can cancel in $\sigma_{had}/\sigma_{norm}$, and corrections often done already partly... MANY COMPLICATIONS

How to get the hadronic vac.-pol. contributions with precision:

- Lowest energies most important, i.e. the hadronic channels 2π , 3π , KK, 4π , 5π , etc. Have to sum ~ 24 exclusive channels and inclusive data for \sqrt{s} above 1.43 2 GeV to get total σ_{had} with high precision.
- In each channel: Combine data from many different experiments: use e.g. non-linear χ^2_{\min} fit (and do error analysis with covariance matrix)
- Before averaging and \sum : Check Radiative Corrections of each data set:
 - \rightarrow Additional final state photons must be fully <code>included/estimated</code>
 - \rightarrow For σ^0 , running $\alpha(s)$ effects must be *subtracted*
 - (otherwise double-counting with $a_{\mu}^{\rm had,NLO}$)

- \rightarrow but effects can cancel in $\sigma_{had}/\sigma_{norm}$, and corrections often done already partly.
 - → PRECISION ONLY FROM TH + MonteCarlo + EXP

Figure from Fred Jegerlehner

 \rightarrow In total these radiative corrections lead to an additional uncertainty of $\delta a_{\mu}^{\text{had},\text{VP+FSR}} \simeq 1.8 \times 10^{-10} \quad [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$ (HLMNT analysis)

A brief history of different evaluations of $a_{\mu}^{\text{had}, \text{ LO}}$:

★ since then the dominant CMD-2 data have been 'confirmed' by other measurements ★ the compilations of σ_{had} and hence a_{μ}^{had} have become even more precise since then

Most important channels with changes in input data since ${\sim}2006$

The main players for 'low' energy hadronic cross sections in e^+e^- :

- CMD-2, [VEPP-2M], Novosibirsk (K^+K^- , $2\pi^+2\pi^-\pi^0$, $2\pi^+2\pi^-2\pi^0$)
- SND, [VEPP-2M], Novosibirsk $(K^+K^-, K_S^0K_L^0)$
- KLOE, [DA Φ NE], Frascati ($\pi^+\pi^-(\gamma)$, $\omega\pi^0$)
- BaBar, [PEP-II], SLAC, Stanford $(K^+K^-\pi^0, K_S^0\pi K, 2\pi^+2\pi^-\pi^0, K^+K^-\pi^+\pi^-\pi^0, 2\pi^+2\pi^-\pi^0, 2\pi^+2\pi^-2\pi^0)$
- BELLE, [KEKB], KEK, Tsukuba
- BES, [BEPC], Beijing (inclusive $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ data)
- CLEO, [CESR], Cornell (inclusive R)
- In principle inclusion of new data in updated analysis straightforward...

Concentrate on two cases where not: most important 2π and the 1.43 - 2 GeV region.

Zoom in low energy and peak and $\rho - \omega$ interference region

- Very good agreement between data from CMD-2 and SND, fully consistent with earlier data.
- Low energy points crucial for recent improvement of $a_{\mu}^{\pi\pi}$.
- g 2 integral over KLOE data agrees extremely well with the corresponding integral over all other sets: KLOE alone: $a_{\mu}^{\pi\pi} = (384.16 \pm 3.47) \cdot 10^{-10}$, all data without KLOE: $(384.12 \pm 2.51) \cdot 10^{-10}$.
- \rightarrow However: some differences in shape prevent good point-by-point combination:

KLOE 08 and BaBar 09 $\pi\pi(\gamma)$ Radiative Return result compared to comb. of all other:

Radiative Return (at fixed e^+e^- energy) has recently developed (TH + EXP) into a powerful method with great potential, complementary to direct energy scan!

Normalised difference of cross sections

• New method used by 'meson factories', where high statistics compensates α/π suppression of γ radiation.

- Results for 2π channel slightly different in shape, but completely different method, Monte Carlos etc.
- → HLMNT 09: Combination with KLOE data after integration: (BaBar not yet in as only available recently)

 $a_{\mu}^{\pi\pi}(0.596 \,\text{GeV} < \sqrt{s} < 0.972 \,\text{GeV}) = (384.13 \pm 2.03) \cdot 10^{-10}$

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

 \rightarrow Important improvements over earlier data compilations.

BaBar Radiative Return data lower than less precise older data in most channels.

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

(contd)

 \rightarrow BaBar lower in $2\pi^+ 2\pi^- \pi^0$ channel \rightsquigarrow errors for g-2 scaled up by $\sqrt{\chi^2_{\min}/\text{dof}} = 1.29$.

(contd 2)

 \rightarrow Again 'bad' $\chi^2_{\rm min}/{
m dof}$ of 2.7 and 2.9. Data not really compatible, inflate error.

Perturbative QCD vs. inclusive data above 2 GeV (below charm threshold)

- R_{uds} from pQCD mostly below data in region above 2 GeV
- Latest BES data agree very well with pQCD
- \bullet shift downwards relevant for g-2 and $\Delta \alpha$

- What about the au data?
- CVC hypothesis (Isospin-symm.) connects $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ to $e^+ e^- \rightarrow \rho, \omega \rightarrow \pi^+ \pi^-$
- Sizeable Isospin-symmetry violations [from radiative corrections, mass differences $(m_{\pi^-} \neq m_{\pi^0}), \ \rho - \omega \text{ interf.}]$ $(\rightarrow \text{Cirigliano+Ecker+Neufeld})$
- Role of possible $\rho^0 \rho^{\pm}$ mass difference?
- Width difference $\Gamma_{\rho^0} \neq \Gamma_{\rho^{\pm}}$? Large effects possible! Are the model calculations reliable?

S. Eidelman (ICHEP06): au compared to e^+e^- data

- \rightarrow Disagreement between τ and e^+e^- data already for $[B_{\tau} B_{CVC}]_{\pi\pi^0}$: up to 4.5 σ ?!
- \rightarrow Recent work of Davier et al. gives better agreement..
- \hookrightarrow Is everything under control at the % level? Is something wrong with data? H^- ?
 - KLOE Radiative Return agrees much better with e^+e^- scan experiments.
 - Current 'consensus': Better NOT use τ data for g-2 predictions.

Recent compilation from Davier et al. [Fig. from 0908.4300]:

 \rightarrow Disagreement between τ and e^+e^- data less severe than previously but still not solved.

→ Work from Benayoun et al. [EPJC55 (2008) 199; and recent 0907.4047,5603]: mixing + isospin breaking effects in model based on *Hidden Local Symmetry* $\sim \tau$ compatible with and confirm e^+e^- ?!

• Results of HLMNT09 compilation

- Accidental cancellation of mean value shifts between different energy regions (compared to HMNT 2006 analysis, units of 10^{-10}):
 - low energy exclusive channels, 0.32 1.43 GeV: -0.76
 - inclusive-exclusive region, 1.43 2 GeV: +2.10
 - higher energy inclusive, 2 11.09 GeV: -1.35
 - \rightarrow ... the power of statistical fluctuations ...

► $a_{\mu}(\text{LO, had}) = 689.41 \pm 3.61_{\text{exp}} \pm 1.82_{\text{rad}}$

Note: will probably change soon as BaBar's 2π Radiative Return data now available. However combination non-trivial as in 'tension' with KLOE as discussed. \rightarrow Our first new fit results (ongoing work) suggest shift of $\sim 5 \times 10^{-10}$ upwards. New KLOE 2009 data (to be published soon) will also have impact. \rightarrow

► $a_{\mu}(\text{NLO, had}) = -9.79 \pm 0.06_{\text{exp}} \pm 0.03_{\text{rad}}$ [Was $a_{\mu}(\text{NLO, had}) = -9.79 \pm 0.09_{\text{exp}} \pm 0.03_{\text{rad}}$.]

BaBar's new and KLOE's 2008 2π data from Radiative Return:

Difference plots as in Davier et al.'s analysis [Figs. from 0908.4300]

 \rightarrow Disagreement between BaBar's and KLOE's 2π spectral functions (both from Rad. Ret.), especially at medium and larger energies.

KLOE's 2009 2π data from Radiative Return as presented at $\Phi\psi 09$ last October:

Comparison with Novosibirsk's data and difference plots [Figs. from 0912.2205]

The different SM contributions numerically:

Source	contr. to $a_{\mu} imes 10^{11}$	remarks
QED	$116\ 584\ 718.10\pm0.16$	up to 5-loop! (Kinoshita+Nio, Passera)
	(was $116\ 584\ 719.35\pm1.43$)	\blacktriangleright incl. recent updates of α
EW	154 ± 2	2-loop, Czarnecki+Marciano+Vainshtein
		(agrees very well with Knecht+Peris+Perrottet+deRafael)
LO hadr.	$7110 \pm 50 \pm 8 \pm 28$	Davier+Eidelman+Hoecker+Zhang '03b (au)
	$6963 \pm 62 \pm 36$	Davier+Eidelman+Hoecker+Zhang '03b $\left(e^+e^- ight)$
	$6924 \pm 59 \pm 24$	Hagiwara+Martin+Nomura+T 03
new data:	$6894 \pm 36 \pm 18$	HLMNT09, incl. recent CMD-2, SND, KLOE data
NLO hadr.	$-97.9 \pm 0.6 \pm 0.3$	HLMNT, in agreem. with Krause '97, Alemany+D+H '98
L-by-L	105 ± 26	Prades+deRafael+Vainshtein
< Nov. 2001:	(-85 ± 25)	the 'famous' sign error, $2.6\sigma \rightarrow 1.6\sigma$
\sum	116591773 ± 48	with HLMNT09 (e^+e^-)

For the first time the theory prediction of $g\!-\!2$ is more precise than its measurement

III. SM vs. BNL: A sign of New Physics?

The experiment E821 at Brookhaven (Uncovered storage ring with three scientists)

Covered muon storage ring; running (Pictures from the g-2 Collaboration)

$a_{\mu}^{\rm SM}$ compared to BNL world av.

Recent changes

TH: Improved LO hadronic (from e^+e^-):

[New data from CMD-2, SND, KLOE, BaBar, CLEO, BES. Combination of excl. (BaBar RadRet) and incl. data below 2 GeV.]

 $(6894 \pm 46) \cdot 10^{-11} \longrightarrow (6894 \pm 40) \cdot 10^{-11}$

TH: Use of recent L-by-L compilation [PdeRV]: $a_{\mu}^{\text{L-by-L}} = (10.5 \pm 2.6) \cdot 10^{-10}$

EXP: Small shift of BNL's value due to CODATA's shift of muon to proton magn. moment ratio: Was $a_{\mu} = 116\ 592\ 080(63) \cdot 10^{-11}$

 $\rightarrow a_{\mu} = 116~592~089(63) \cdot 10^{-11} (0.5 \,\mathrm{ppm})$

► With this input HLMNT 09 get:

 $a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{TH}} = (31.6 \pm 7.9) \cdot 10^{-10}$, ~ **4.0** σ

 \ldots $3-4\,\sigma$, not going away (but not 5) \ldots $a_\mu^{
m SM}$ always stayed $< a_\mu^{
m EXP}$ \ldots SUSY? \ldots

SUSY contributions in a_{μ} ?

$$a_{\mu}^{\text{SUSY},1-\text{loop}} \simeq \frac{\alpha}{8\pi \sin^2 \theta_W} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$

They mainly come from:

- SUSY is a good candidate to explain $\Delta a_{\mu}=a_{\mu}^{\rm EXP}-a_{\mu}^{\rm SM}$, but
 - no chargino at LEP
 - so far no light Higgs
 - limits on lightest charged SUSY part.
 - \bullet + limits from direct searches
 - \bullet SPS 1a' in 1σ band from g-2
- Many other BSM scenarios, like
 e.g. Universal Extra Dimensions,
 would not 'do the job'.

IV. The 'running coupling' $\alpha_{\rm QED}(q^2)$ and the Higgs mass

• Vacuum polarisation leads to the 'running' of α from $\alpha(q^2=0)~=~1/137.035999084(51)$ to $\alpha(q^2=M_Z^2)\sim 1/129$

•
$$\alpha(s) = \alpha / (1 - \Delta \alpha_{\text{lep}}(s) - \Delta \alpha_{\text{had}}(s))$$

• Again use of a dispersion relation:

$$\Delta \alpha_{\text{had}}^{(5)} = -\frac{\alpha s}{3\pi} P \int_{s_{\text{th}}}^{\infty} \frac{R_{\text{had}}(s') \, ds'}{s'(s'-s)}$$

- Hadronic uncertainties $\rightsquigarrow \alpha$ is the least well known Electro-Weak SM parameter of $[G_{\mu}, M_Z \text{ and } \alpha(M_Z^2)]$!
- We find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$ i.e. $\alpha (M_Z^2)^{-1} = 128.947 \pm 0.020$ (HLMNT '09)

• m_H would move further down with new $\Delta \alpha$.

V. The next round

Where is improvement needed most urgently? Hadronic VP still with the biggest error.

Pie diagrams of contributions to a_{μ} and $\alpha(M_Z)$ and their errors²: enjoy!

Big changes and most critical regions:

 $\rightarrow a_{\mu}$:

1.4 - 2 GeV already significantly improved; low energies, i.e. ρ (central and low), dominant source of contr. and error, and again the region below 2 GeV.

∞m_{π} 2 rad. 1.4 0.6 0.6 $a_{\mu}^{ ext{ had,LO}}$ ∞ 0.9 2 1.4 0.9 0.6 $\infty m_{\pi} 0.6$ 0.9 rad 1.4 2 2 $\Delta \alpha_{\rm had}^{(5)} (M_Z^2)$ ∞́ 11 11

value

 $(error)^2$

$\rightarrow \alpha(M_Z)$:

inclusive data need improvement in wide region up to where pQCD is used; *better* control of radcors!

Summary:

- g 2 strongly tests *all sectors* of the SM and constrains possible physics beyond.
- Recently new data for the $\pi\pi$ channel from Novosibirsk (CMD-2 and SND) and Frascati (KLOE, using the new method of *Radiative Return*) have lead to a considerable error reduction (Δa_{μ} down by $\sim 20 \cdot 10^{-11}$).
- Further improvements and consolidation through many hadronic cross section measurements, with important input from BaBar, BES and CLEO.
- \rightarrow Interaction of TH + EXP was and will be most important to achieve even higher precision!
- At present a $3 4\sigma$ deviation persists.
- SUSY could, quite naturally, explain the discrepancy; the SUSY parameter space is already strongly constrained by g-2.
- With the same data compilation as for g-2 also the hadronic contributions to $\Delta \alpha(q^2)$ have been determined; in turn $\alpha(M_Z^2)$ has been improved considerably.

Outlook:

- Further Radiative Return analyses from Frascati (KLOE) are reported and in progress; they will check $\pi\pi$ down to the threshold and hopefully squeeze the error further.
- BaBar is very successful with Rad. Ret. for higher multiplicity final states and has also published very precise new 2π results which are now available.
- Even better prospects (factor 2–3) with VEPP2000 (CMD-3, SND), possibly DA Φ NE-2.
- At higher energies, BES-III at BEPCII in Beijing just started; opportunities for BELLE.
- \rightarrow Very good prospects to bring the error of $a_{\mu}^{\rm SM}$ (and $\Delta \alpha$) down significantly!
- ▶ The g 2 Collaboration is planning to move (partly by helicopter..) the ring from BNL to Fermilab, upgrading the experiment E821 to P989, designed to achieve a 0.14ppm measurement of g 2. Hopefully the US politicians will value this great opportunity!
- ▶ J-PARC, a new high intensity proton accelerator near KEK plans to host a radically new designed g 2 experiment. Improvement by a factor 5-10 might be possible!
- For g 2, Light-by-Light may well become the limiting factor.
- ► The coming years will be most exciting, and not only for the LHC ... Stay tuned!