Laser-Driven Plasma Accelerators

Simon Hooker

Department of Physics, University of Oxford

Nicolas Bourgeois, Luis Caballero-Bendixsen, Tom Rowlands-Rees, Tom Ibbotson, Svetoslav Bajlekov & Andreas Walker

E. Esarey, C. G. R. Geddes, A. J. Gonsalves, B. Nagler, K. Nakamura, D. Panasenko, C. B. Schroeder, Cs. To'th & W. P. Leemans

S. Becker, I. Cortrie, M. Fuchs, F. Grüner, D. Habs, R. Hörlein, S. Karsch, Zs. Major, J. Osterhoff, A. Popp, U. Schramm, G. D. Tsakiris, R. Weingartner, B. Zeitler & F. Krausz

S. Mangles, Z. Najmudin et al.

centray aver faction

P. Foster, P. Rajeev, P.A. Norreys, John Collier et al Financial support gratefully received from:

- EPSRC
- Leverhulme Trust
- The MathWorks

- Laser-driven plasma accelerators
 - Overview of operation
 - Early experimental results
 - Scaling to higher energies
- · Electron acceleration in a plasma waveguide
 - Generation of GeV beams
- Present status, future directions and potential applications
 - Controlled injection
 - Radiation generation
 - Increased beam energy

Tajima & Dawson Phys Rev. Lett. 43 267 (1979)

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Accelerators have many applications

- Synchrotrons (a few GeV)
- FELs (a few GeV to a few 10s of GeV)
- Particle physics (up to a few TeV)

Conventional radio-frequency accelerators are highly developed, so why bother with plasma accelerators?

Why might plasma accelerators be interesting?

- Big accelerators are:
 - big
 - expensive

<u>Diamond</u> Length: 150 m Beam energy (electrons): 3 GeV Cost: £370M

<u>CERN LHC</u> Circumference: 27 km Beam energy (protons): 7 TeV Cost: £2G

Why might plasma accelerators be interesting?

- The acceleration gradient in a plasma accelerator is <u>much</u> bigger:
 - In a conventional particle accelerator acceleration gradient limited by electrical breakdown to:

 $E_z \approx 10 - 100 \, {\rm MV m^{-1}}$

 A plasma accelerator can reach acceleration gradients of order:

i.e. 3 to 4 orders of magnitude larger

Why might plasma accelerators be interesting?

- Plasma accelerators offer new possibilities:
 - Oscillation period of accelerating field is ~ 100 fs:
 - Allows generation and acceleration of femtosecond duration bunches

The ponderomotive force

An ionized electron *quivers* in the E-field of the laser with a *ponderomotive energy*:

$$U_{p} = \frac{1}{2}m_{e}v^{2} = 0.57 \ I_{18}\lambda_{\mu m}^{2} \ m_{e}c^{2}$$

Excitation of wakefield

The ponderomotive force in a laser pulses with intensity of order 1018 W cm-2 expels electrons from the region of the pulse to form a trailing plasma wakefield.

Orders of magnitude

The electric field within the plasma can reach the *wave-breaking limit*:

$$E_{wb}^{non rel.} = rac{m_e \omega_p c}{e}$$

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e \varepsilon_0}}$$

Example :

$$n_{e} = 10^{18} \text{ cm}^{-3}$$

 $\omega_{p} = 5.6 \times 10^{13} \text{ s}^{-1}$
 $T_{p} = 110 \text{ fs}$
 $E_{wb}^{non rel.} = 95 \text{ GV m}^{-1}$

Limitations

Several processes limit the length over which acceleration can occur:

- Defocusing of the pump beam
- Dephasing between electrons and plasma wave

In addition, we need some way of injecting electrons into the plasma wake...

Electron injection: External

- Plasma waves of large amplitude become nonlinear and develop a "sawtooth" profile
- It <u>is</u> now possible for an initially stationary electron to reach v > v_p and hence be trapped
- This is known as wavebreaking

- Nonlinear plasma waves develop curved phase fronts
- This allows electrons to be injected transversely
- This is known as transverse wavebreaking

At sufficiently high driving intensities the "bubble" or "blow-out" regime is reached

Most experiments to date operate in this regime

Z. Najmudin *et al.* Phys. Plasma **10** 2071 (2003) S. D. Mangles et al. *Nature* 431 02939 (2004)

- Early experiments on laser-driven plasma accelerators show continuous, quasi-thermal energy spectrum.
- Electrons injected from background plasma
- Maximum electron energy ~ 100 MeV

Laser parameters

- Energy 1 J
- Pulse duration 30 fs

Typical output parameters:

- Output energy: 100 170 MeV
- Energy spread: 2.5 8%
- Bunch charge: 20 500 pC

Plasma parameters:

- Plasma density of ~ 10¹⁹ cm⁻³
- Length of gas jet ~ 1 2 mm

C. G. R. Geddes et al. *Nature* **431** 02900 (2004) S. D. Mangles et al. *Nature* **431** 02939 (2004) J. Faure et al. *Nature* **431** 02963 (2004)

Quasi-monoenergetic bunch production relies on 4-step process:

- Self-focusing and self-modulation of laser pulse to excite non-linear wakefield
- Self-injection of background electrons (transverse wave breaking)
- Termination of self-injection (beam loading)
- Acceleration of electrons over distance approx. equal to dephasing length.

Plasma accelerators: Scaling to higher energies

Accelerating field:
$$E_z \propto \omega_p \propto \sqrt{n_e}$$
Dephasing length: $L_{deph} \approx \frac{\lambda_p^3}{\lambda^2} \propto \frac{1}{n_e^{3/2}}$ Energy gain: $\Delta W = E_z L_{deph} \propto \frac{1}{n_e}$ Factor 10 increase in energy requires: \cdot Factor 10 decrease in electron
density $\rightarrow \sim 10^{18}$ cm⁻³• Factor 30 increase in length $\rightarrow \sim 30$
 $- 60$ mm $Z_R = \frac{\pi W_0^2}{\lambda}$ Eg. $W_0 = 10 \ \mum; \ \lambda = 1 \ \mum$
 $\Rightarrow Z_R = 0.3 \ mm$

This leads to self-focusing for beams above a critical power:

$$P_{c} = 17.4 \left(\frac{\omega}{\omega_{p}}\right)^{2} \, \mathrm{GW}$$

Example $n_e = 10^{18} \text{ cm}^{-3}, \lambda = 800 \text{ nm}: P_c = 8 \text{ TW}$

A propagating beam will be focused if the refractive index *decreases* with distance from axis.

Plasma channel: transverse variation of <u>electron density</u> yields refractive index profile:

$$\eta = \sqrt{1 - \left(\frac{\omega_p}{\omega}\right)^2} \approx 1 - \frac{1}{2} \frac{n_e(r)e^2}{\gamma m_e \varepsilon_0 \omega^2}$$

A parabolic electron density profile supports matched guiding of Gaussian beams with a constant spot size:

$$N_{e}(r) = N_{e}(0) + \Delta N_{e}(r / r_{ch})^{2}$$

$$W_{M} = \left(\frac{r_{ch}^{2}}{\pi r_{e} \Delta n_{e}}\right)^{1/4}$$

D. J. Spence et al. Phys. Rev. E 63 015401(R) (2001)

A. Butler et al. Phys. Rev. Lett. 89 185003 (2002).

Plasma channel formed by heat conduction to capillary wall.

Channel is fully ionized and stable.

Capillary discharge waveguide: Interferometry

A. J. Gonsalves et al. *Phys. Rev. Lett.* **98** 025002 (2007)

Phase shift of probe beam :

$$\Phi_{\rho}(y,z) = -r_e \lambda \int_{-X/2}^{X/2} n_e(x,y,z) dx$$

UNIVERSITY OF

OXFORD

Oxford/LBNL experiments: Set-up

Oxford/LBNL experiments Guided beam (low power)

W. P. Leemans et al. *Nature Physics* **2** 696 (2006)

K. Nakamura et al. *Phys. Plasmas* **14** 056708 (2007)

capillary exit plane

~ 100 mJ/pulse

no capillary

with capillary

Oxford/LBNL experiments Guided beam

W. P. Leemans et al. *Nature Physics* **2** 696 (2006)

K. Nakamura et al. *Phys. Plasmas* **14** 056708 (2007)

Guiding achieved over 33 mm:

- Capillary 190 um
- Input laser power 40 TW
- Peak input intensity > 10¹⁸ W cm⁻²
- Plasma: 3 × 10¹⁸ cm⁻³
- Spot size at entrance 26 µm
- Spot size at exit 33 µm

• Laser: 40 TW: 1.5 J, 37 fs

In recent experiments with the Astra-Gemini laser by the Imperial College et al, 0.8 GeV beams were generated by relativistically-guided (200 TW) laser pulses [Kneip et al. *Phys. Rev. Lett.* **103**, 035002 (2009)]

- Laser-driven plasma accelerators have made very significant advances in the last few years.
- It is now possible to generate monoenergetic electron beams with energies comparable to those used in synchrotrons.
- In the near-term we can expect <u>controlled</u> and <u>stable</u> laser-accelerated beams with parameters suitable for applications.

Likely near-term				
parameters				
Energy:	few GeV			
ΔΕ:	~1%			
σ _x	~ 5 µm			
σ'_{x}	~ 1 mrad			
Bunch duration:	~ 10 fs			
Bunch charge:	10-100 pC			
Repetition rate:	10 Hz			

Current research on laser-driven plasma accelerators may be divided into several themes:

- Improved shot-to-shot stability
 - Imperative for applications
- Increased beam energy
- Better (single-shot) diagnostics
 - emittance
 - bunch duration (~ 10 fs?)
- Development of applications

- In current experiments the generated beams have relatively poor shot-to-shot stability
 - jitter in E ~ 5%
 - jitter in Q ~ 50%
 - beam pointing ~ 5 mrad
- Some of these are caused by fluctuations in the laser and plasma conditions
 - Require engineering solutions
- <u>Controlling the injection</u> offers potential for significant improvements

- Plasma electrons heated stochastically at collision, allowing some to be injected
- Energy tuned from 50 300 MeV by changing collision point

- Velocity of wake slowed, trapping easier
- Low absolute energy spread of ~ 0.2 MeV/c at a momentum of 0.76 MeV/c

Near-term applications: Radiation generation

Laser-driven accelerators could be used to drive very compact, tunable sources of:

- Femtosecond electron bunches: 0.1 1 GeV
- Femtosecond x-rays:
 - Bending magnet: 5 keV (0.2 nm)
 - 10 mm period undulator: 1 keV (1 nm)

all intrinsically synchronized to a femtosecond visible laser system

Undulator radiation

Undulator equation: $\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{\kappa^2}{2} \right)$ where, $\kappa = \frac{eB_0 \lambda_u}{2\pi m_e c}$

3.5 ^x 10⁴ through a 1m long, 20mm period (K=0.6) undulator 1GeV 3 Photons s⁻¹ mrad⁻² (0.1% bandwidth)⁻¹ 0.5GeV 2.5 2 1.5 1 0.5 0 15 20 10 25 5 Wavelength (nm)

On-axis flux density from 10fs, 100pC electron bunches

Near-term applications: Radiation generation

Generation of undulator radiation demonstrated for first time by Jena-Strathclyde collaboration

- Electron beam: 55 75 MeV
- Undulator: $\lambda_{p} = 20 \text{ mm}, N = 50, K = 0.6$
- Peak brilliance est. to be 6×10¹⁶ ph/s/mrad²/mm²/0.1%

Near-term applications: Radiation generation

Fuchs et al. Nature Physics (2009)

Recently <u>extended to soft x-</u> ray wavelengths by MPQ-Oxford collaboration

- Electron beam: 210 MeV
- Undulator: $\lambda_{p} = 5 \text{ mm}$
- Radiation at 18 nm & 9 nm (2nd harmonic)
- Peak brilliance est. to be 2×10¹⁷ ph/s/mrad²/mm²/0.1%
- Preliminary tuning demonstrated

- Spontaneous radiation causes electron microbunching on scale of radiation wavelength
- Leads to coherent emission of radiation; self-amplification
- Exponential gain in power output:

Free-electron lasers

- The LCLS FEL uses the last one-third of the two-mile SLAC accelerator
- Recently demonstrated lasing at 0.15 nm
- Project cost ~\$350M (\$300M saved by using SLAC)

Simon Hooker, University of Oxford

 Pierce parameter,
 O, characterizes strength of coupling between electrons and radiation field

$$\frac{\sigma_{\gamma}}{\gamma} < \rho = \frac{1}{2\gamma} \left[\frac{I_p}{I_A} \left(\frac{\lambda_u K f_K}{2\sqrt{2\pi\sigma_b}} \right)^2 \right]^{1/3}$$

Parameter	Plasma accelerator	TESLA XFEL
Energy (GeV)	0.5 – 1	10 - 20
Energy spread σ _γ /γ (%)	1 – 5	0.02
Bunch charge (pC)	100 – 250	1000
Bunch duration (fs)	10	80
Peak Current <i>I_p</i> (kA)	10	12
Norm. emittance (mm mrad)	1 – 10	1.4

FELs: GENESIS Simulations

• Further simulations (Q = 250 pC, ε_n = 1 mm mrad):

Rad.	Undulator		Electrons			Output characteristics				
λ (nm)	λ _u (mm)	К	E (MeV)	σ _E /E (%)	τ _e (fs)	L _{sat} (m)	P _{sat} (GW)	N γ /pulse	τ _r (fs)	B.W. (%)
50	20	2.0	400	1	10	5.1	4.2	7.8 10 ¹²	4.3	2.7
10	15	1.9	750	1	10	18.3	1.6	1.1 10 ¹²	7.8	12.6
10	15	1.9	750	0.5	10	4.8	50.0	1.1 10 ¹³	3.3	1.3
5	10	2.2	950	0.5	5	5.1	283.0	7.6 10 ¹²	1.7	0.7

FELs: Comparison to conventional sources

The challenges for a laser-driven plasma accelerator operating at TeV energies are daunting...

	1 GeV	1 TeV
		(ILC class)
No. electrons	2 × 10 ⁸	2 × 10 ¹⁰
Energy in e-	0.03 J	3.2 kJ
Laser energy	1.5 J	160 kJ
Rep. rate	10 Hz	14 kHz
Mean laser power	15 W	2.2 GW
Electrical energy	.1% 15 kW	2.2 TW

The challenges for a laser-driven plasma accelerator operating at TeV energies are daunting...

	1 GeV	1 TeV	With following wind		
		(ILC class)			
No. electrons	2 × 10 ⁸	2 × 10 ¹⁰	2 × 10 ¹⁰		
Energy in e-	0.03 J	3.2 kJ	3.2 kJ		
Laser energy	1.5 J	160 kJ	16 kJ		
Rep. rate	10 Hz	14 kHz	14 kHz		
Mean laser power	15 W	2.2 GW	220 MW		
Electrical energy	15 kW	2.2 TW	2.2 GW		

Indeed, in USA the BELLA (laser-driven) and FACET (beam-driven) projects have been funded (~\$50M) to investigate <u>potential</u> for scaling to collider-type energies

- Laser-driven plasma accelerators have made significant advances in last 5 years.
- Now possible to generate monoenergetic electron beams with energies comparable to those used in synchrotrons.
- It is likely that in the next few years these will be used to drive incoherent sources of tunable, femtosecond x-rays.
- It remains to be seen if the brightness of the electron beam is sufficient to drive very compact FELs.
- Extending to TeV (esp. high pulse rep. rate) level is challenging and will require significant advances in both plasma accelerators <u>and</u> laser technology