# **Black Holes at the LHC**

Dr Cigdem Issever University of Oxford

04. February 2009 Particle Physics Seminar Rutherford Appleton Laboratory

EA ITA CO



# Introduction to Black Holes Gravity and Standard Model

#### Extra Dimension Models

# Production of BH at the LHC Experimental Signatures

### Why the Earth is safe...

# **A Bit of Black Hole History**

#### 18th



Pierre-Simon Laplace & John Michel

1915/16



**Albert Einstein** 

1916



Karl Schwarzschild

1963



**Roy Kerr** 

1967



John A. Wheeler

1974



**Stephen Hawking** 

04.02.2009

# **Schwarzschild Black Holes**



# **Rotating Black Holes – Kerr Solution**

rotating massive body frame dragging ergosphere: particles have to corotate Penrose effect BH emits energetic particles  $\rightarrow$  energy loss



http://www.gothosenterprises.com/black\_holes/rotating\_black\_holes.html

# The "No-Hair Theorem"



#### Black holes are characterized by their

#### Energy,

- Angular momentum,
- Electric (color) charge.

#### Do NOT conserve B, L or flavour in ordinary world

## **Replace Sun by a Black Hole....**



#### **Replace Sun by a Black Hole....**

#### It would get a bit dark and cold..... But the planets would still orbit as before....

Gravitational field depends only on mass!

#### **Production of Black Holes**



# Bring mass closer than its Schwarzschild Radius, R<sub>S</sub>,





#### and a black hole will form!

#### **Production of Black Holes**



# Bring mass closer than its Schwarzschild Radius, R<sub>S</sub>,





#### and a black hole will form!



#### **Production of Black Holes**





# **Gravity and Standard Model**



#### **Comparison of the Forces in Nature**

| Gravity                    | Weak                | Electromagnetic                                                | Strong             |
|----------------------------|---------------------|----------------------------------------------------------------|--------------------|
| Graviton<br>(not observed) | W⁺, W⁻, Z           | Photon                                                         | Gluon              |
| All                        | Quarks &<br>Leptons | Quarks,<br>charged<br>leptons, W <sup>+</sup> , W <sup>-</sup> | Quarks &<br>gluons |
| 10-41                      | 0.8                 | 1                                                              | 25                 |

Gravity is very weak --- Hierarchy Problem! M<sub>PL</sub>~10<sup>19</sup> GeV : M<sub>EWK</sub>~10<sup>3</sup> GeV

## **The Standard Model**

Gravity is not included
 Particles + Forces

 Picture of nature

 Too many elementary particles: 60



#### **The Standard Model**

| 1 | IA<br>1<br>H | IIA             | Periodic Table   |                 |                  |                 |                 |                  |           |                   |                   | VIIA       | 0<br>2<br><b>He</b> |          |                 |                 |                 |                 |
|---|--------------|-----------------|------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------|-------------------|-------------------|------------|---------------------|----------|-----------------|-----------------|-----------------|-----------------|
| 2 | 3<br>Li      | 4<br>Be         |                  | of the Elements |                  |                 |                 |                  |           | 5<br><b>B</b>     | °<br>C            | 7<br>N     | 8<br>0              | 9<br>F   | 10<br>Ne        |                 |                 |                 |
| 3 | 11<br>Na     | 12<br><b>Mg</b> | ШB               | IYB             | ٧B               | ΥIB             | ΥIIB            |                  | — YII —   |                   | IB                | IB         | 13<br>Al            | 14<br>Si | 15<br>P         | 16<br>S         | 17<br>CI        | 18<br><b>Ar</b> |
| 4 | 19<br>K      | 20<br><b>Ca</b> | 21<br>Sc         | 22<br>Ti        | 23<br><b>Y</b>   | 24<br>Cr        | 25<br><b>Mn</b> | 26<br>Fe         | 27<br>Co  | 28<br>Ni          | 29<br>Cu          | 30<br>Zn   | 31<br><b>Ga</b>     | 32<br>Ge | 33<br><b>As</b> | 34<br>Se        | 35<br><b>Br</b> | 36<br><b>Kr</b> |
| 5 | 37<br>Rb     | 38<br>Sr        | 39<br>Y          | 40<br>Zr        | 41<br>ND         | 42<br><b>Mo</b> | 43<br>TC        | 44<br>Ru         | 45<br>Rh  | 46<br><b>Pd</b>   | 47<br>Ag          | 48<br>Cd   | 49<br><b>In</b>     | 50<br>Sn | 51<br>Sb        | 52<br><b>Te</b> | 53<br>          | 54<br>Xe        |
| 6 | 55<br>Cs     | 56<br><b>Ba</b> | 57<br><b>*La</b> | 72<br>Hf        | 73<br><b>Ta</b>  | 74<br>₩         | 75<br><b>Re</b> | 76<br><b>Os</b>  | 77<br>Ir  | 78<br>Pt          | 79<br>Au          | 80<br>Hg   | 81<br>TI            | 82<br>Pb | 83<br>Bi        | 84<br><b>Po</b> | 85<br>At        | 86<br><b>Rn</b> |
| 7 | 87<br>Fr     | 88<br><b>Ra</b> | 89<br>+AC        | 104<br>Rf       | 105<br><b>Ha</b> | 106<br>Sg       | 107<br>NS       | 108<br><b>Hs</b> | 109<br>Mt | 110<br><b>110</b> | 111<br><b>111</b> | 112<br>112 | 113<br>113          |          |                 |                 |                 |                 |

070.071976.78276

### **The Standard Model**





#### There must be something beyond it!

# **Extra Dimensions**

No theory of first principles Provide simplified framework with testable results Can help us to gain insights about the underlying theory

#### Extra Dimensions are not a new idea!

- 1920's Kaluza&Klein unify electromagnetism with gravity
- 1970 String Theory is born
- 1971 SUSY enters the stage
- 1974 Gravitons "pop out" of string theory



- 1984 Superstring Theory
  - 10, 11 or 26 dimensions needed
  - Compactified
- 1998 Large Extra Dim.
  - Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali

### **Extra Dimension (ED) Models**

ED may explain complexity of particle physicsWhere are they?



An acrobat can only move in one dimension along a rope..

## **Extra Dimension (ED) Models**

ED may explain complexity of particle physicsWhere are they?



...but a flea can move in two dimensions.

# **Extra Dimension (ED) Models**

ED may explain complexity of particle physicsWhere are they?





#### Gravity is escaping into the extra dimensions.

04.02.2009

C. Issever, University of Oxford

# **Gravity in Extra Dimension**

At small distances gravity can be very strong, up to 10<sup>38</sup> times stronger:

$$F \approx \frac{G_D}{r^{n+2}} \qquad \qquad G_D = GL^n \qquad \qquad M_D^{n+2} = \frac{(2\pi)^n}{8\pi G_D}$$

At large distances gravity seems weak

$$F \approx rac{G_D}{L^n \cdot r^2} pprox rac{G}{r^2}$$

G is "diluted" strength of gravity in our 3-dim. space.  $G_D$  is the (4+n)-dimensional Newton gravity constant.

#### **Other Predictions of Extra Dimension Models**

#### **KK** particles



#### C. Issever, University of Oxford

#### **Experimental Limits**

#### Table top

#### Particle accelerators

## Astrophysical observations

# Cosmic-ray measurementsCosmological considerations

#### **Table Top Experiments**



# 1/r<sup>2</sup>-law valid for R=44 µm at 95%

Ann.Rev.Nucl.Part.Sci.53:77-121,2003, hep-ph/0307284

#### **Particle Accelerators**

hep-ph/0201029, hep-ex/0605101, hep-ph/9909294, hep-ex/0710.3338, hep-ex/0707.2524, Phys. Lett. B568 (2003) 35-47, ZEUS-prel-07-028

```
DESY:
    H1: M<sup>-</sup><sub>s</sub> > 0.78 TeV and M<sup>+</sup><sub>s</sub> > 0.82 TeV
    ■ ZEUS: M<sup>-</sup><sub>s</sub> > 0.9 TeV and M<sup>+</sup><sub>s</sub> > 0.88 TeV
LEP:
    \blacksquare M<sub>D</sub> =1.5 TeV for n = 2 \Leftrightarrow R = 0.2 \mum
    \blacksquare M<sub>D</sub> = 0.75 TeV for n = 5 \Leftrightarrow R = 400 fm
CDF:
    ■M<sub>D</sub> = 1.33 TeV, n = 2 ⇔R = 0.27 μm
    \blacksquare M<sub>D</sub> = 0.88 TeV for n = 6 \Leftrightarrow R = 31fm
■D0 (II, gg):
    ■ M<sub>D</sub> = 1.23 TeV lower limit
```

#### **Astrophysical and Cosmological Constraints**

hep-ph/0304029, hep-ph/0309173, hep-ph/0307228

#### Places the most stringent lower limits on M<sub>D</sub> in ADD

#### Supernova cooling due to KK G emission

SN 1987A did not emit more KK G than compatible with neutrino signal durations observed by Kamiokande and IMB places the limits: M<sub>D</sub> > 22 (2) TeV for n = 2 (3).

#### Energetic Gamma Ray Experiment Telescope (EGRET)

Cosmic γ-ray-bkg:

■ M<sub>D</sub> > 70 (5) TeV for n = 2 (3)

Neutron star halo of 100 MeV γ-rays:

M<sub>D</sub> > 97, 8, 1.5 TeV for n = 2, 3, 4

All neutron stars in the galactic bulge:

■ M<sub>D</sub>> 1130, 57, 7, 1.8 TeV for n = 2, 3, 4, 5

Neutron star heating:

M<sub>D</sub>>1760, 77, 9, 2 TeV for n = 2, 3, 4, 5

#### Ultra high-energy cosmic-ray neutrinos:

Iower bound M<sub>D</sub> = 1 to 1.4 TeV , n = 4 to 7

04.02.2009

#### **Astrophysical and Cosmological Constraints**

hep-ph/0304029, hep-ph/0309173, hep-ph/0307228

#### Places the most stringent lower limits on the in ADD

#### Supernova cooling due to KK G emission

SN 1987A did not emit more KK G than atible with neutrino signal durations observed by Kamic limits: M<sub>D</sub> > 22 (2) TeV for n = 2 (3) Energetic Gamma Ray Expension It Te
 Cosmic γ-ray-bkg: M<sub>D</sub> > 70 (5) TeV for r (1) and IMB places the

#### It Telescope (EGRET)

- Neutron star halo of eV γ-rays:
   M<sub>D</sub>> 97, 8, 1.5 for n = 2, 3, 4
   All neutron st eV che galactic bulge:
   M<sub>D</sub>> 11 for n = 2, 3, 4, 5
   Neutron for n = 2, 3, 4, 5

M<sub>D</sub>>17, 77, 9, 2 TeV for n = 2, 3, 4, 5

#### Ultra high-energy cosmic-ray neutrinos:

Iower bound M<sub>D</sub> = 1 to 1.4 TeV , n = 4 to 7

04.02.2009

# Black Holes @ LHC

#### **Semi-classical Black Holes**

## **Production of Black Holes at the LHC**





#### **Semi Classical Production Cross Section**

$$\sigma_{ab \rightarrow BH}(\hat{s}) \approx \pi R_h^2$$

#### valid for $M >> M_D$



#### **Time Evolution of Black Holes**



## **Trapped Energy Discussion**



- Fractions of E, p and J are lost before settling to a BH!
- Yoshino & Rychkov calculated energy loss



04.02.2009

#### Effect of energy loss in formation and balding phase



<sup>04.02.2009</sup> 

C. Issever, University of Oxford

#### **Production Cross Section for flat tensionless Brane**

0711.3012 [hep-ph]



#### Production Cross Sections for flat, tensionless Brane

0711.3012 [hep-ph]



#### C. Issever, University of Oxford

#### **Split Fermion Brane Extra Dimensions**

hep-ph/0605085, 0505112, 0606321, 0612018;gr-qc/0604072

#### BH don't conserve B or L or flavour

- induced proton decay!
- n nbar oscillations!
- Flavour changing neutron currents or large neutrino mixing



### **Split Fermion Brane Extra Dimensions**

#### 0711.3012 [hep-ph]



#### BH at the LHC will decay mainly into quarks and gluons!

#### C. Issever, University of Oxford

#### Production Cross Section for Split Fermion EDs 0711.3012 [hep-ph]



#### **Branes with positive Tension**



#### **Production Cross Section on Brane with Tension**



C. Issever, University of Oxford

#### **Time Evolution of Black Holes**



#### **Black Holes decay!**



Joins gravitation, quantum field theory and thermodynamics!!!



emit particles ≈ **black body** thermal spectrum.



- •BH lifetime @ LHC ~ 10<sup>-27</sup>–10<sup>-25</sup> s
- Decays with equal probability to all particles.

Energy

niversity of Oxford

#### **Black Holes decay!**



 Astronomical BH -- COLD Low Evaporation Rate
 Micro BH -- HOT High Evaporation Rate



emit particles ≈ **black body** thermal spectrum.



- •BH lifetime @ LHC ~ 10<sup>-27</sup>–10<sup>-25</sup> s
- Decays with equal probability to all particles.

niversity of Oxford

#### **Black Holes decay!**



 Astronomical BH -- COLD Low Evaporation Rate
 Micro BH -- HOT High Evaporation Rate



emit particles ≈ **black body** thermal spectrum.



- •BH lifetime @ LHC ~ 10<sup>-27</sup>–10<sup>-25</sup> s
- Decays with equal probability to all particles.

niversity of Oxford



# Footprints of Microscopic Black Holes hadron : lepton ≈ 5 : 1 Theoretical uncertainties large

- high multiplicities 10 – 40 particles/event
- decay product's energies up to TeV

#### SM backgrounds expected to be low

#### 0711.3012 [hep-ph]

| scenario    | q + g | leptons | W, Z | V    | G    | Н    | photons |
|-------------|-------|---------|------|------|------|------|---------|
| d=4,<br>J=0 | 79%   | 9.5%    | 5.7% | 3.9% | 0.2% | 0.9% | 0.8%    |

0711.3012 [hep-ph]

| scenario     | q + g | leptons | W, Z | V    | G    | Н    | photons |
|--------------|-------|---------|------|------|------|------|---------|
| d=4,<br>J=0  | 79%   | 9.5%    | 5.7% | 3.9% | 0.2% | 0.9% | 0.8%    |
| d=10,<br>J=0 | 74%   | 7.7%    | 6.8% | 3.2% | 6.5% | 0.7% | 1.5%    |

0711.3012 [hep-ph]

| scenario                           | q + g | leptons | W, Z | V    | G    | н    | photons |
|------------------------------------|-------|---------|------|------|------|------|---------|
| d=4,<br>J=0                        | 79%   | 9.5%    | 5.7% | 3.9% | 0.2% | 0.9% | 0.8%    |
| d=10,<br>J=0                       | 74%   | 7.7%    | 6.8% | 3.2% | 6.5% | 0.7% | 1.5%    |
| d=10,<br>J=0,<br>n <sub>s</sub> =7 | 84%   | 1.8%    | 5.4% | 0.5% | 6.7% | 0.3% | 1.6%    |

0711.3012 [hep-ph]

| scenario                                    | q + g | leptons | W, Z | V     | G    | Н    | photons |
|---------------------------------------------|-------|---------|------|-------|------|------|---------|
| d=4,<br>J=0                                 | 79%   | 9.5%    | 5.7% | 3.9%  | 0.2% | 0.9% | 0.8%    |
| d=10,<br>J=0                                | 74%   | 7.7%    | 6.8% | 3.2%  | 6.5% | 0.7% | 1.5%    |
| d=10,<br>J=0,<br>n <sub>s</sub> =7          | 84%   | 1.8%    | 5.4% | 0.5%  | 6.7% | 0.3% | 1.6%    |
| d=5,<br>J=0,<br>n <sub>s</sub> =2,<br>B=0.4 | 96%   | 1.6%    | 1.7% | 0.15% | 0.4% | 0.2% | 0.3%    |

0711.3012 [hep-ph]

| scenario                                    | q + g | leptons | W, Z | V     | G    | Н    | photons |
|---------------------------------------------|-------|---------|------|-------|------|------|---------|
| d=4,<br>J=0                                 | 79%   | 9.5%    | 5.7% | 3.9%  | 0.2% | 0.9% | 0.8%    |
| d=10,<br>J=0                                | 74%   | 7.7%    | 6.8% | 3.2%  | 6.5% | 0.7% | 1.5%    |
| d=10,<br>J=0,<br>n <sub>s</sub> =7          | 84%   | 1.8%    | 5.4% | 0.5%  | 6.7% | 0.3% | 1.6%    |
| d=5,<br>J=0,<br>n <sub>s</sub> =2,<br>B=0.4 | 96%   | 1.6%    | 1.7% | 0.15% | 0.4% | 0.2% | 0.3%    |
| d=10,<br>J>0                                | 78%   | 6.5%    | 9.6% | 2.5%  | ?    | 0.7% | 2.6%    |

#### Footprints of Microscopic Black Holes ■ hadron : lepton ≈ 5 : 1 May be it looks like a yeti??

Theoretical uncertainties large

high multiplicities 10 – 40 particles/event

decay product's energies up to TeV

#### SM backgrounds expected to be low

04.02.2009

C. Issever, University of Oxford

#### Multiplicity for d = 5, M<sub>\*</sub>=1 TeV, Mbh> 5TeV



# Footprints of Microscopic Black Holes ■ hadron : lepton $\approx$ 5 : 1

Theoretical uncertainties large

high multiplicities 10 – 40 particles/event

#### decay product's energies up to TeV

#### SM backgrounds expected to be low

04.02.2009

C. Issever, University of Oxford

May be it

looks like

a yeti??

#### **Scalar Sum Pt of Black Hole Events**



#### **Reconstructed Mass**

 $Sum |P_{T}| > 2.5 TeV$ 

# Sum $|P_{T}| > 2.5$ TeV Lepton $P_{T} > 50$ GeV



#### **Backgrounds are low**

### Missing Transverse Energy (MET)

 $Sum|P_T| > 2.5TeV$ 



#### Hard to reproduce in other new physics scenarios.

04.02.2009

C. Issever, University of Oxford

#### Discovery Reach for S>10 and S/sqrt(B) > 5



#### BH with m>5 TeV with a few pb<sup>-1</sup> BH with m>8 TeV with 1 fb<sup>-1</sup>

04.02.2009



#### Biting the hand that feeds IT



A lawsuit has been filed in Hawaii in an attempt to hold up the start of operations by the Large Hadron Collider (LHC) atom-smasher on the French-Swiss border.

A colourful American botanist, teacher, former biologist and sometime physicist says (in outline) that the LHC may rip a hole in the fabric of the space-time continuum and so destroy the Earth. He wants the US government to act now and delay the LHC's startup while a new safety review is carried out.

#### LHC is safe!

J. Ellis, http://indico.cern.ch/conferenceDisplay.py?confld=39099

- LHC@14 TeV=cosmic ray@10<sup>17</sup>eV
- ~ 3.10<sup>22</sup> cosmic rays >10<sup>17</sup> eV have struck Earth
- Equivalent to 10<sup>5</sup> LHC programmes
- Area of Sun 10<sup>4</sup> larger
- 10<sup>11</sup> stars in galaxy
- 10<sup>11</sup> galaxies in Universe
- Nature has performed 10<sup>31</sup> LHC programmes
- Nature carries out 3.10<sup>13</sup> LHC programmes per second

arXiv:0806.3414v2 [hep-ph]



ultra-high-energy cosmic rays up to 10<sup>20</sup> eV

#### **Black Holes are safe**

Giddings & Mangano arXiv:0806.3381 [hep-ph]

#### Concerns:

- Will be produced in rest @ LHC
- Will be neutral and stable
- Black Holes are unstable
  - Otherwise 2<sup>nd</sup> law of thermodynamics violated
  - Hawking, decay is related to their production
- EVEN IF stable, accretion rate negligible if high D
- EVEN IF low D, some of those produced by cosmic rays would be charged
  - would have stopped in Earth: 'We are here !`
- EVEN IF all neutral, some would have been produced on white dwarfs and neutron stars
  - would have stopped: `White dwarfs and neutron stars are out there!`

# Why the Earth won't be destroyed







■ Black Holes are not black!
 ■ Extra Dimension → Strong gravity



- Probe Planck scale physics
- general relativity quantum theory
- Discovery possible at the LHC with a few pb<sup>-1</sup>
- Challenging experimental signatures

#### The LHC is safe!



## Cygnus A (Elliptical galaxy)

#### 730 million lightyears

- This galaxy is the brightest radio source in the constellation Cygnus (Swan).
- The supermassive black hole in its center.

#### **Gravity and Metrics**

$$c^2\tau^2 = c^2dt^2 - dr^2 - r^2(d\theta^2 - \sin 2\theta d\varphi^2)$$

Minkowski metric of special relativity

$$c^{2}\tau^{2} = (1 - \frac{r_{s}}{r})c^{2}dt^{2} - \frac{dr^{2}}{1 - \frac{r_{s}}{r}} - r^{2}(d\theta^{2} - \sin 2\theta d\varphi^{2})$$

Schwarzschild metric, solution of Einstein's field equation in empty space

$$c^{2}\tau^{2} = (1 - \frac{r_{s}r}{\rho^{2}})c^{2}dt^{2} - \frac{\rho^{2}}{\Lambda^{2}}dr^{2} - \rho^{2}d\theta^{2} - (r^{2} + \alpha^{2} + \frac{r_{s}r\alpha^{2}}{\rho^{2}}\sin^{2}\theta)\sin 2\theta d\phi^{2} + \frac{2r_{s}r\alpha\sin^{2}\theta}{\rho^{2}}cdt^{2} - \frac{r_{s}r\alpha\sin^{2}\theta}{\rho^{2}}cdt^{2} + \frac{r_{s}r\alpha\cos^{2}\theta}{\rho^{2}}cdt^{2} + \frac{r_{s}r\alpha\cos^{2}\theta}$$

04.02.2009

C. Issever, University of Oxford

#### **Planck Scale Definitions**

$$M_D^{n+2} = (2\pi)^n / 8\pi G_D$$
 PDG definition  

$$M_{DL}^{D-2} = 1/G_D$$
 Dimopoulos & Landsberg  

$$M_{GT}^{n+2} = (2\pi)^n / 4\pi G_D$$
 Giddings & Thomas  

$$G_D = G^* (2\pi R)^n$$
 D-dimensional Newton  

$$D = n + 4$$
 Total number of dimensions

#### hep-ph/0106219,0110127,0007016,0110067

#### **Laws of Black Hole Mechanics**

**BH** Thermodynamics

0<sup>th</sup> Law

Horizon has constant surface gravity,  $\boldsymbol{\kappa}$ 

1<sup>st</sup> Law

$$dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$$

2<sup>nd</sup> Law

$$dA \ge 0$$

 $3^{rd}$  Law No BH with  $\kappa = 0!$ 

#### Thermodynamics

0<sup>th</sup> Law

T is constant in a body of thermal equibilirium

1<sup>st</sup> Law

$$dU = dQ - dw$$

2<sup>nd</sup> Law

entropy of a closed system is a non-decreasing function of time

3<sup>rd</sup> Law

Can't reach absolute zero in a physical process

$$T_{BH} = \frac{\kappa}{2\pi}$$

 $S_{BH} = \frac{A}{4}$ 

04.02.2009

C. Issever, University of Oxford



#### Asking a Judge to Save the World, and Maybe a Whole Lot More



Part of a detector to study results of proton collisions by a particle accelerator that a federal lawsuit filed in Hawali seeks to stop.

#### More Articles in Science »

#### Great Getaways - Travel Deals by E-Mail





Also in Tech: <u>Do you still shop at eBay?</u> Wine, beer and a little AC/DC <u>Quitting Facebook gets easier</u>

MOST POPULAR