Constraints on the CKM Unitarity

Triangle from Charmless 3-body
Decays at BABAR
Thomas Latham

Overview

- Introduction
- Detector \& Dataset
- CP violation
- Analysis Techniques
- Theory Motivation
- Recent results from BaBar:
- $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$
- $B^{0} \rightarrow K_{\mathrm{S}} \pi^{+} \pi^{-}$
- $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$
- Conclusion

PEP II and BaBar

- PEP II/BaBar B-Factory located at Stanford Linear Accelerator Center
- Collided beams of electrons and positrons with asymmetric energies

Instrumented Flux Return
iron / RPCs / LSTs (muon / neutral hadrons)

Dataset

- BaBar data-taking ended on $7^{\text {th }}$ April 2008
- Total of $\sim 531 \mathrm{fb}^{-1}$ recorded, $\sim 432 \mathrm{fb}^{-1}$ at the $\mathrm{Y}(4 \mathrm{~S})$
- Analyses presented here use either 232 or 383 million BB pairs

The CKM Mechanism

- $C P$ violation in the Standard Model arises from a single

$$
\begin{gathered}
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right) \\
V_{\mathrm{CKM}} \approx\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
\end{gathered}
$$ phase in the quark-mixing (CKM) matrix

- Unitarity conditions of matrix can be expressed as triangles in complex plane
- Half of 2008 Nobel Prize in physics awarded to Kobayashi and Maskawa

Direct CP Violation

- $C P$ violation in decay
- $A \neq \bar{A}$ - both Figs. (a) \& (b)
- Rate asymmetry requires two amplitudes with both different weak and strong phases to contribute Fig. (b)
- Observed in decays of neutral K and B mesons
(a)

(b)

Mixing-induced $C P$ violation

- CP violation in interference between mixing and decay

- Occurs in decays of neutral B mesons to CP eigenstates

- Since it depends on B-mixing it is a time-dependent effect
- Necessitates measurement of separation of B vertices and tag flavour

Analysis Variables - Topological

- Light quark continuum cross section $\sim 3 \mathrm{x} b \bar{b}$
- B mesons produced almost at rest since just above threshold
- Use event topology to
 discriminate
- Combine variables in an MVA, e.g. Fisher, Neural Network or Decision Tree

Analysis Variables - Kinematic

Make use of precision kinematic information from the beams.

$$
m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}}
$$

Characteristic
Signal
Distributions

Characteristic
Continuum
Distributions

$$
\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}
$$

Search for $B^{+} \rightarrow K^{+} K^{+} \pi^{-}$and $B^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

- Highly suppressed in the Standard Model
- BFs of only 10^{-11} and 10^{-14} respectively
- Significant signals would be clear sign of new physics
- Extended maximum likelihood fit to $m_{\text {ES }}, \Delta E$ and a Neural Network of topological variables
- Fit includes signal, continuum background and $5 B$-background categories

Search for $B^{+} \rightarrow K^{+} K^{+} \pi^{-}$and $B^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

- No significant signals seen in either channel
- Upper limits calculated using Feldman-Cousins method, including systematic uncertainties

- Calculated upper limits are 1.6×10^{-7} and 9.5×10^{-7} respectively
- Improvements of approx factor 8 and 2 respectively
- Results published as rapid communication in Phys.
Rev. D78, 091102 (2008)

Introduction to Dalitz-plot analysis

- Dalitz plot (DP) is a 2D visualisation of the complete phase space for decays of a spin-0 particle into 3 spin-0 particles (i,j,k)
- e.g. decays of a B meson into combinations of $\pi^{ \pm}, \pi^{0}, K^{ \pm}$, K^{0}, η, η etc.
- Any point in the DP must satisfy

$$
m_{B}^{2}+m_{i}^{2}+m_{j}^{2}+m_{k}^{2}=m_{i j}^{2}+m_{i k}^{2}+m_{j k}^{2}
$$

- Traditionally plotted as $m^{2}{ }_{i k}$ vs. $m^{2}{ }_{j k}$
- Purely phase-space decays would uniformly populate the DP

An example Dalitz plot

- Resonances appear as bands of events in the Dalitz plot
- Position and size of band related to mass and width of resonance
- Resonance spin determines distribution of events along the band
- Exact pattern of events in Dalitz plot determined by interference between the various contributing states

$C P$ Violation in Dalitz plots

- Measurement of relative phases of intermediate states gives greater sensitivity to $C P$ violation effects e.g.
- Direct $C P$ violation with only relative weak phase
- Sensitivity to both $\sin (2 \beta)$ and $\cos (2 \beta)$ in timedependent measurements
- Sensitivity to γ by combining measurements
- Comes at the cost of model dependence

Isobar Model

- Model the complete 3-body decay as a sum of contributing amplitudes

- Both nonresonant and resonant amplitudes
- $F=$ resonance dynamics
- c and θ are relative magnitudes and phases

Resonance Dynamics

- Describe resonances by a product of factors

$$
F=R \times X_{B} \times X_{D} \times T
$$

$\square \mathrm{R}=$ mass dependence, e.g. Breit-Wigner

- $\mathrm{X}=$ Blatt-Weisskopf form factors for resonance production and decay
- $\mathrm{T}=$ angular factor, e.g. Zemach formalism
- Together these determine the variation of the magnitude and phase over the Dalitz plot

Dalitz-plot analysis of charmless 3-body decays

- Rich structure of possible intermediate resonant states in the Dalitz plot, e.g. K^{*}, ϕ, ρ, f_{0}
- Interference allows measurement of relative phases
- Contributions from $b \rightarrow s$ (penguin), $b \rightarrow u$ (tree) and $b \rightarrow d$ (penguin) processes
- Relative weak phase (γ) between tree and penguins
- Possibility for direct CP violation

$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \pi^{+} \pi^{-}$

Introduction to $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$

- Theoretical prediction and previous experimental hints of large $A_{C P}$ in $B^{+} \rightarrow \rho^{0} K^{+}$
- Both tree and penguin diagrams contribute
- No CP asymmetry expected in $B^{+} \rightarrow K^{*} 0 \pi^{+}$
\square Any observation would be sign of new physics
- DP analysis is sensitive to both magnitude and phase differences
- Highest (BF x ε) of all $K \pi \pi$ modes
- Knowledge of signal DP model determined here can feed into analyses of other modes
- BaBar results from 383 million BB pairs published in Phys. Rev. D78, 012004 (2008)

Details of $K^{+} \pi^{+} \pi^{-}$Signal Model

- Signal model contains:
- $K^{* 0}(892)$ - Relativistic Breit-Wigner
- $K \pi$ S-wave - LASS
- $K_{2}{ }^{* 0}(1430)-$ RBW
- $\rho^{0}(770)-$ RBW
- ω (782) - RBW
- $\mathrm{f}_{0}(980)$ - Flatté
- $f_{2}(1270)-$ RBW
- " $\mathrm{f}_{\mathrm{x}}(1300)$ " - RBW (m and Γ consistent with $\mathrm{f}_{0}(1500)$)
- $\chi_{\mathrm{co}}-$ RBW
- Phase-space nonresonant

Plots from $K^{+} \pi^{+} \pi^{-}$DP Fit

Total Fit Result
Continuum background
BB background

Fit Results from $K^{+} \pi^{+} \pi^{-}$Analysis

Mode	Fit Fraction (\%)	$\mathcal{B}\left(B^{+} \rightarrow\right.$ Mode $)\left(10^{-6}\right)$	$A_{C P}(\%)$	DCPV Sig.
$K^{+} \pi^{-} \pi^{+}$Total		$54.4 \pm 1.1 \pm 4.5 \pm 0.7$	$2.8 \pm 2.0 \pm 2.0 \pm 1.2$	
$K^{* 0}(892) \pi^{+} ; K^{* 0}(892) \rightarrow K^{+} \pi^{-}$	$13.3 \pm 0.7=0.7_{-0.9}^{+0.4}$	$7.2 \pm 0.4 \pm 0.7_{-0.5}^{+0.3}$	$+3.2 \pm 5.2 \pm 1.1_{-0.7}^{+1.2}$	0.9σ
$(K \pi)_{0}^{* 0} \pi^{+} ;(K \pi)_{0}^{* 0} \rightarrow K^{+} \pi^{-}$	$45.0 \pm 1.4 \pm 1.2_{-0.2}^{-12.9}$	$24.5 \pm 0.9 \pm 2.1_{-1.1}^{+7.0}$	$+3.2 \pm 3.5 \pm 2.0_{-1.9}^{+2.7}$	1.2σ
$\rho^{0}(770) K^{+} ; \rho^{n}(770) \rightarrow \pi^{+} \pi^{-}$	$6.54 \pm 0.81 \pm 0.58_{-0.26}^{+0.69}$	$3.56 \pm 0.45 \pm 0.43_{-0.15}^{+0.38}$	$+44 \pm 10 \pm 4_{-13}^{+5}$	3.7%
$f_{0}(980) K^{+} ; f_{0}(980) \rightarrow \pi^{+} \pi^{-}$	$18.9 \pm 0.9=1.7_{-0.6}^{+2.8}$	$10.3 \pm 0.5 \pm 1.3_{-0.4}^{+1.5}$	$-10.6 \pm 5.0 \pm 1.1_{-1.0}^{+3.4}$	1.8σ
$\chi_{c 0} K^{+} ; \chi_{c 0} \rightarrow \pi^{+} \pi^{-}$	$1.29 \pm 0.19 \pm 0.15_{-0.03}^{+0.12}$	$0.70 \pm 0.10 \pm 0.10_{-0.02}^{+0.06}$	$-14 \pm 15 \pm 3_{-5}^{+1}$	0.5σ
$K^{+} \pi^{-} \pi^{+}$nonresonant	$4.5 \pm 0.9 \pm 2.4_{-1.5}^{+0.6}$	$2.4 \pm 0.5 \pm 1.3_{-0.8}^{+0.3}$	-	-
$K_{2}^{* 0}(1430) \pi^{+} ; K_{2}^{* 0}(1430) \rightarrow K^{+} \pi^{-}$	$3.40 \pm 0.75 \pm 0.42_{-0.13}^{+0.99}$	$1.85 \pm 0.41 \pm 0.28_{-0.08}^{+0.54}$	$+5 \pm 23 \pm 4_{-7}^{+18}$	0.2σ
$\omega(782) K^{+} ; \omega(782) \rightarrow \pi^{+} \pi^{-}$	$0.17 \pm 0.24 \pm 0.03_{-0.08}^{+0.05}$	$0.09 \pm 0.13 \pm 0.02_{-0.04}^{+0.03}$	-	-
$f_{2}(1270) K^{+} ; f_{2}(1270) \rightarrow \pi^{+} \pi^{-}$	$0.91 \pm 0.27 \pm 0.11^{+0.24}$	$0.50 \pm 0.15 \pm 0.07^{+0.13}$	$-85 \pm 22 \pm 13^{+22}$	3.5σ
$\underline{f \mathrm{X}(1300) K^{+} ; f_{\mathrm{X}}(1300) \rightarrow \pi^{+} \pi^{-}}$	$1.33 \pm 0.38 \pm 0.86_{-0.14}^{+0.04}$	$0.73 \pm 0.21 \pm 0.47_{-0.08}^{+0.02}$	$+28 \pm 26 \pm 13_{-5}^{+7}$	0.6σ

First error is statistical, second systematic and third model-dependent. Significance of DCPV is statistical only.

Total NR branching fraction $=\left(9.3 \pm 1.0 \pm 1.2_{-0.4}^{+6.7} \pm 1.2\right) \times 10^{-6}$

$B^{+} \rightarrow \rho^{0} K^{+}$Direct CP Asymmetry

Determining γ from $K \pi \pi$

Determining γ from $K \pi \pi$ DPs

- Much recent theoretical activity in this area
- Main method involves $K^{+} \pi^{-} \pi^{0}$ and $K_{S} \pi^{+} \pi^{-}$DPs
- Ciuchini et al., Phys. Rev. D74, 051301 (2006)
- Gronau et al., Phys. Rev. D75, 014002 (2007)
- Gronau et al., Phys. Rev. D77, 057504 (2008) and D78, 017505 (2008)
- Other methods use $K_{S} \pi^{+} \pi^{0} ; K^{+} \pi^{+} \pi^{-}$\& $K_{S} \pi^{+} \pi^{-}$; and B_{s} decays to $K^{+} \pi^{-} \pi^{0} \& K_{s} \pi^{+} \pi^{-}$
- Ciuchini et al., Phys. Rev. D74, 051301 (2006)
- Bediaga et al., Phys. Rev. D76, 073011 (2007)
- Ciuchini et al., Phys. Lett. B645, 201 (2007)

Determining γ from $K \pi \pi$ DPs

- Method from Ciuchini et al. and Gronau et al.
- Use $B \rightarrow K^{*} \pi$ modes to form isospin triangles
- $\mathrm{A}_{\mathrm{ij}}=\mathrm{A}\left(B^{0} \rightarrow K^{\star \mathrm{i}} \pi^{\mathrm{i}}\right)$
- $\Phi_{3 / 2}=\gamma$ up to correction from EW penguins
- The amplitude magnitudes as well as $\phi, \bar{\phi}$ and $\Delta \phi$ can be measured from Dalitzplot analyses of $K^{+} \pi^{-} \pi^{0}$ and
 $K_{\mathrm{s}} \pi^{+} \pi^{-}$

$\boldsymbol{B}^{0} \rightarrow \boldsymbol{K}_{\mathrm{s}} \pi^{+} \pi^{-}$

Introduction to $B^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

- Phase $\Delta \phi$ can be determined from this DP from interference between:
- $K^{*+} \pi^{-}$and $\rho^{0} K_{\mathrm{S}}$ in the B^{0} decay
- $K^{*}-\pi^{+}$and $\rho^{0} K_{S}$ in the \bar{B}^{0} decay
- This measurement does not require tagging or time-dependent analysis
- However, time-dependent analysis also allows measurements of $\beta_{\text {eff }}$ from $\rho^{0} K_{\mathrm{S}}, f_{0} K_{\mathrm{S}}$

Time-dependent Dalitz-plot Analysis

- Combining both techniques leads to a very complex PDF
- Each point in the DP can have a different time evolution - The different signal model components interfere as normal - In addition the B^{0} and \bar{B}^{0} amplitudes interfere through mixing
- Effects of mis-tagging and the detector resolution on Δt measurement have to be taken into account

$$
\begin{aligned}
\mathcal{L}_{n}^{s i g}\left(m_{+}^{2}, m_{-}^{2}, \Delta t, q_{\text {tag }}\right)= & \frac{1}{\mathcal{N}} \sum_{c} f_{c} \frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}} \times \\
& {\left[\left(|\mathcal{A}|^{2}+|\overline{\mathcal{A}}|^{2}\right)\left(1+q_{\mathrm{tag}} \frac{\Delta D^{c}}{2}\right)\right.} \\
& -q_{\mathrm{tag}}\langle D\rangle^{c}\left(|\mathcal{A}|^{2}-|\overline{\mathcal{A}}|^{2}\right) \cos \left(\Delta m_{d} \Delta t\right) \\
& \left.+q_{\mathrm{tag}}\langle D\rangle^{c} 2 \operatorname{Im}\left[\overline{\mathcal{A}} \mathcal{A}^{*} e^{-i \phi_{m i x}}\right] \sin \left(\Delta m_{d} \Delta t\right)\right]
\end{aligned}
$$

Details of $K_{S} \pi^{+} \pi^{-}$Signal Model

- Signal model contains:
- $K^{\star+}(892)$ - Relativistic Breit-Wigner
- K π S-wave - LASS
- $\rho^{0}(770)$ - Gounaris-Sakurai
- $\mathrm{f}_{0}(980)$ - Flatté
- $f_{2}(1270)$ - RBW
- " $\mathrm{f}_{\mathrm{x}}(1300)$ " - RBW (m and Γ consistent $\mathrm{w} / \mathrm{f}_{0}(1500)$)
- $\chi_{c 0}$-RBW
- Phase-space nonresonant

Plots from $K_{s} \pi^{+} \pi^{-}$DP Fit

Fit Results $-B^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

- BABAR preliminary results from 383 million $\overline{\mathrm{BB}}$ give:

$$
\begin{aligned}
& 2 \beta_{\text {eff }}\left(f_{0} K_{\mathrm{s}}\right)=(89 \pm 22 \pm 5 \pm 8)^{\circ} \\
& 2 \beta_{\text {eff }}\left(\rho^{0} K_{\mathrm{s}}\right)=(37 \pm 19 \pm 5 \pm 6)^{\circ}
\end{aligned}
$$

- Errors are stat, syst, model
- Both results are compatible with measurements from charmonium
- Conference paper: arXiv:0708.2097 [hep-ex]

Fit Results $-B^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

- BABAR preliminary result:
$\Delta \phi=(-164 \pm 24 \pm 12 \pm 15)^{\circ}$
- Errors are stat, syst, model
- This phase difference includes the $B^{0} \bar{B}^{0}$ mixing phase (-2β)
- Secondary solution excluded at $>3 \sigma$

$\boldsymbol{B}^{0} \rightarrow \boldsymbol{K}^{+} \pi^{-} \pi^{0}$

Introduction to $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

- Can determine the phases ϕ and $\bar{\phi}$ from this Dalitz plot
- Mode is self-tagging (from charge of kaon) so analysis does not involve flavour tagging or time-dependence
- BABAR have results from 232 million BB
- Also preliminary results from 454 million BB
- Analysis not yet performed by Belle

Details of $K^{+} \pi^{-} \pi^{0}$ Signal Model

- Signal model contains:
- $K^{*+}(892)$ - Relativistic Breit-Wigner
- $K^{* 0}(892)$ - Relativistic Breit-Wigner
- $(K \pi)^{+}$S-wave - LASS
- $(K \pi)^{0}$ S-wave - LASS
- $\rho^{-(770)}$ - Gounaris-Sakurai
- Phase-space nonresonant

Plots from $K^{+} \pi^{-} \pi^{0}$ DP Fit

Fit Results $-B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

- BABar results from 232 million BB pairs published in:
- Phys. Rev. D78, 052005 (2008)
- Scans opposite show the results for ϕ and ϕ
- Presence of multiple solutions reduces precision of constraint
- Preliminary BaBAR results on 454 million BB indicate much better separation between solutions

- Likelihood scans of phase differences not yet completed
- arXiv:0807.4567 [hep-ex]

Fit Results $-B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$

- BaBar results from 232 million BB pairs published in:
- Phys. Rev. D78, 052005 (2008)
- Scans opposite show the results for ϕ and ϕ
- Presence of multiple solutions reduces precision of constraint
- Preliminary BaBar results on 454 million BB indicate much better separation between solutions
- Likelihood scans of phase differences not yet completed
- arXiv:0807.4567 [hep-ex]

Constraining γ

Constraining γ

- BABAR results from $K_{S} \pi^{+} \pi^{-}(\operatorname{arXiv}: 0708.2097)$ and $K^{+} \pi^{-} \pi^{0}$ (arXiv:0711.4417) combined together - Gronau et al., Phys. Rev. D77, 057504 (2008) and D78, 017505 (2008)

Dotted purple line - unconstrained $\left|\mathrm{R}_{3 / 2}\right|$ Solid blue line $-0.8<\left|\mathrm{R}_{3 / 2}\right|<1.2$

$$
39^{\circ}<\Phi_{3 / 2}<112^{\circ}(68 \% \mathrm{CL})
$$

Constraining γ

- CKM constraint in presence of EW penguins is:

$$
\bar{\eta}=\tan \Phi_{3 / 2}[\bar{\rho}-0.24 \pm 0.03]
$$

Conclusion

- Charmless 3-body decays of B mesons allow measurements of all 3 Unitarity Triangle angles
- Not mentioned in this talk - TDDP analysis of $B \rightarrow \pi \pi \pi^{0}$ allows measurement of α and of $K K K_{\mathrm{S}}$ gives further information on $\beta_{\text {eff }}$
- The B-factories have reacted quickly to the theoretical developments regarding constraining γ with $B \rightarrow K \pi \pi$ decays
- Results available allow such a constraint to be formed
- Updated results expected soon from BABAR
- Should help to resolve ambiguities
- Measurements from other $K \pi \pi$ modes, such as $B \rightarrow K_{s} \pi^{+} \pi^{0}$, could help improve the precision
- Future experiments, such as LHCb and a possible Super Flavour Factory, will be able to improve precision of these results

Backup Material

General differences between BABAR and

Belle $B \rightarrow K \pi \pi$ analyses

- Main difference is in approach to low mass $K \pi$ S-wave
- BaBAR use the LASS parameterisation
- Coherent sum of $K_{0}{ }^{*}(1430)$ and effective range nonresonant that is constrained to be unitary
- BABAR analyses also have to include a phase-space NR term to account for NR events above LASS cut-off ($\sim 1.8 \mathrm{GeV} / \mathrm{c}^{2}$)
- Belle use $K_{0}{ }^{*}(1430)$ as RBW and exponential shaped NR
- Belle parameterisation often suffers from multiple solutions where the fractions of the $K_{0}{ }^{*}(1430)$ are very different
- Preferred solution can often depend on which other terms are included in the DP model, e.g. $K_{2}^{*}(1430)$
- Neither approach is perfect but both seem to allow a pretty good fit to the data
- Does make comparison of results rather tricky
- However, different approaches don't seem to significantly affect results for other modes in the DP, e.g. $\rho^{0} K^{+} A_{C P}$

Systematic/Model dependence of DCPV in $\rho^{0}(770) \mathrm{K}^{+}$

Comparison with Belle $-B^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$

BELLE-CONF-0827-657 million BB

$$
\mathbf{A}_{C P}\left(\rho^{0} K^{+}\right)=\left(+41 \pm 10 \pm 3 \pm{ }_{7}{ }^{2}\right) \%
$$

PRD 78, 012004 (2008) - 383 million BB

$$
\mathbf{A}_{C P}\left(\rho^{0} \boldsymbol{K}^{+}\right)=\left(+44 \pm 10 \pm 4 \pm{ }_{13}\right) \%
$$

Details of BABAR $K_{S} \pi^{+} \pi^{-}$Analysis

Resonance Name	$\left\|c_{\sigma}\right\|$	$\phi[$ degrees $]$	$\left\|\bar{c}_{\sigma}\right\|\left(\left\|\bar{c}_{\bar{\sigma}}\right\|\right)$	$\bar{\phi}[$ degrees $]$
$f_{0}(980) K_{S}^{0}$	4.0	0.0	2.8 ± 0.7	-88.6 ± 21.3
$\rho^{0}(770) K_{S}^{0}$	0.10 ± 0.02	58.6 ± 16.4	0.09 ± 0.02	21.3 ± 21.2
$f_{0}(1300) K_{S}^{0}$	1.9 ± 0.4	117.6 ± 22.6	1.1 ± 0.3	-15.2 ± 23.8
Nonresonant	3.0 ± 0.6	13.8 ± 14.3	3.7 ± 0.5	-16.2 ± 17.3
$K^{*+}(892) \pi^{-}$	0.136 ± 0.021	-60.7 ± 18.5	0.113 ± 0.018	102.6 ± 22.9
$K^{*+}(1430) \pi^{-}$	4.9 ± 0.7	-82.4 ± 16.8	7.1 ± 0.9	79.2 ± 20.5
$f_{2}(1270) K_{S}^{0}$	0.011 ± 0.004	62.9 ± 23.3	0.010 ± 0.003	-73.9 ± 27.8
$\chi_{c 0}(1 P) K_{S}^{0}$	0.34 ± 0.15	68.7 ± 31.1	0.40 ± 0.11	154.5 ± 28.6

Details of Belle $K_{S} \pi^{+} \pi^{-}$Analysis

- Signal model contains:
- $K^{\star+}(892)$ - Relativistic Breit-Wigner
- $K_{0}^{*+}(1430)-$ RBW
- $\rho^{0}(770)$ - Gounaris-Sakurai
- $\mathrm{f}_{0}(980)$ - Flatté
- $f_{2}(1270)$ - RBW
- " $\mathrm{f}_{\mathrm{X}}(1300)$ " - RBW (m and Γ consistent $\mathrm{w} / \mathrm{f}_{0}(1500)$)
- Three exponential shaped NR terms

Comparison with Belle $-B^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

- A new Belle preliminary result from 657 million BB:
$\Delta \phi=\left(-1 \pm{ }^{24}{ }_{23} \pm 11 \pm 18\right)^{\circ}$ (errors are stat, syst, model)
- A second, almost degenerate, solution:
$\Delta \phi=\left(+15 \pm{ }^{19}{ }_{20} \pm 11 \pm 18\right)^{\circ}$

- Difference between solutions is interference between $\mathrm{K}_{0}{ }^{* \pm}(1430)$ and NR
- These again include the $B^{0} \bar{B}^{0}$ mixing phase (-2β)
- Apparent disagreement with the BaBar results

HFAG Averages

HFAG Averages

Details of Belle $K_{S} \pi^{+} \pi^{-}$Analysis

Details of Belle $K_{S} \pi^{+} \pi^{-}$Analysis

Decay channel	Sol. 1 Fraction (\%)	Sol. 2 Fraction (\%)
$K^{*+}(892) \pi^{-}$	9.3 ± 0.8	9.0 ± 1.3
$K_{0}^{*+}(1430) \pi^{-}$	61.7 ± 10.4	17.4 ± 5.0
$\rho^{0}(770) K_{S}^{0}$	6.1 ± 1.5	8.5 ± 2.6
$f_{0}(980) K_{S}^{0}$	14.3 ± 2.7	14.9 ± 3.3
$f_{2}(1270) K_{S}^{0}$	2.6 ± 0.9	3.2 ± 1.2
$f_{X}(1300) K_{S}^{0}$	2.3 ± 0.8	6.0 ± 1.6
$\left(K_{S}^{0} \pi^{+}\right)_{\mathrm{NR}} \pi^{-}$	57.2 ± 11.4	55.9 ± 13.3
$\left(K_{S}^{0} \pi^{-}\right)_{\mathrm{NR}} \pi^{+}$	2.9 ± 4.7	6.4 ± 3.7
$\left(\pi^{+} \pi^{-}\right)_{\mathrm{NR}} K_{S}^{0}$	10.7 ± 3.5	7.7 ± 4.1
Total	167.1 ± 0.2	129.0 ± 0.2

Fit results of $K^{+} \pi^{-} \pi^{0}$ Analysis

isobar j	$F F_{j}$ (\%)	$\mathcal{B}_{j}\left(10^{-6}\right)$	$A_{C P}^{j}$
$K^{*+}(892) \pi^{-}$	$11.8{ }_{-1.5}^{+2.5} \pm 0.6$	$4.2{ }_{-0.5}^{+0.9} \pm 0.3$	$-0.19_{-0.15}^{+0.20} \pm 0.04$
$K^{* 0}(892) \pi^{0}$	$6.7_{-1.5}^{+1.5}+0.7$	$2.4 \pm 0.5 \pm 0.3$	$-0.09_{-0.24}^{+0.21} \pm 0.09$
$(K \pi)_{0}^{*+} \pi^{-}$	$26.3{ }_{-3.8}^{+1.1+2.9}+4.9$	$9.4{ }_{-1.3}^{+1.1+1.4} \pm 1.8$	$+0.17_{-0.16}^{+0.24} \pm 0.09 \pm 0.20$
$(K \pi){ }_{0}^{0} \pi^{0}$	$24.3{ }_{-2.6}^{+3.8}{ }_{-3.0}^{+3.7} \pm 6.7$	$8.7_{-0.9-1.3}^{+1.1+1.8} \pm 2.2$	$-0.22 \pm 0.12_{-0.11}^{+0.13} \pm 0.27$
$\rho^{-}(770) K^{+}$	$22.5_{-3.7}^{+2.2} \pm 1.2$	$8.0{ }_{-1.3}^{+0.9} \pm 0.6$	$+0.11_{-0.15}^{+0.14} \pm 0.07$
N.R.	$12.4 \pm 2.6_{-1.2}^{+1.3}$	$4.4 \pm 0.9 \pm 0.5$	$+0.23_{-0.27}^{+0.19}{ }_{-0.10}^{+0.11}$
Total	$102.3{ }_{-4.0}^{+7.1} \pm 4.1$	$35.7_{-1.5}^{+2.6} \pm 2.2$	$-0.030_{-0.051}^{+0.045} \pm 0.055$

Summary of $K^{*} \pi$ and ρK experimental measurements and theory predictions

	Branching Fraction (10-6)		$\mathrm{A}_{C P}(\%)$	
Mode	Exp.	QCDF	Exp.	QCDF
$K^{* 0} \pi^{+}$	10.0 ± 0.8	8.9 ± 1.6	-2 ± 7	0.16 ± 0.16
$K^{*+} \pi^{0}$	6.9 ± 2.3	5.3 ± 0.8	4 ± 29	-41 ± 7
$K^{*+} \pi^{-}$	10.3 ± 1.1	9.1 ± 1.7	-25 ± 11	-48 ± 8
$K^{* 0} \pi^{0}$	2.4 ± 0.7	3.9 ± 0.8	-15 ± 12	4.7 ± 1.1
$\rho^{+} K^{0}$	$8.0 \pm{ }^{1.5}{ }_{1.4}$	10.3 ± 2.0	-12 ± 17	0.53 ± 0.21
$\rho^{0} K^{+}$	3.8 ± 0.5	4.8 ± 0.9	$42 \pm 8_{10}$	46 ± 6
$\rho^{+} K^{-}$	$8.6 \pm{ }^{0.9} 1.1$	13.4 ± 2.3	15 ± 6	31.4 ± 4.6
$\rho^{0} K^{0}$	$5.4 \pm{ }^{0.9} 1.0$	7.5 ± 1.3	1 ± 20	-3.3 ± 1.3

Experimental numbers from HFAG Summer 2008, QCDF predictions from Chang et al., arXiv:0807.4295v3

Summary of $K^{*} \pi$ and ρK experimental measurements and theory predictions

- Agreement between experiment and theory is generally good
- Experimental precision on CP asymmetries much worse than theory errors
- Would be nice to have (updated) results from $K_{\mathrm{S}} \pi^{+} \pi^{0}$ and $K^{+} \pi^{0} \pi^{0}$, particularly given large $\mathrm{A}_{\text {CP }}$ prediction in $K^{*+} \pi^{0}$
- Most results now coming from Dalitz-plot analyses
- Additional information in the phases can be used to reduce the model dependence in extracting γ

The Square Dalitz Plot

$$
\begin{aligned}
m^{\prime} & \equiv \frac{1}{\pi} \arccos \left(2 \frac{m_{K^{+} \pi^{+}}-m_{K^{+} \pi^{+}}^{\min }}{m_{K^{+} \pi^{+}}^{\max }-m_{K^{+} \pi^{+}}^{\min }}-1\right) \\
\theta^{\prime} & \equiv \frac{1}{\pi} \theta_{K^{+} \pi^{+}}
\end{aligned}
$$

- Transformation of coordinates
- "Zooms" into the areas around the boundary of the conventional Dalitz plot
- Increases resolution in those areas of interest
- Used for all DP histograms in this analysis

LASS Lineshape

- The LASS parameterisation of the $\mathrm{K} \pi$ S-wave consists of the $\mathrm{K}_{0}{ }^{*}(1430)$ resonance together with an effective-range nonresonant component:

$$
\begin{aligned}
\mathcal{M} & =\frac{m_{K \pi}}{q \cot \delta_{B}-i q}+e^{2 i \delta_{B}} \frac{m_{0} \Gamma_{0} \frac{m_{0}}{q_{0}}}{\left(m_{0}^{2}-m_{K \pi}^{2}\right)-i m_{0} \Gamma_{0} \frac{q}{m_{K \pi}} \frac{m_{0}}{q_{0}}}, \\
\cot \delta_{B} & =\frac{1}{a q}+\frac{1}{2} r q .
\end{aligned}
$$

- We have used the following values for the scattering length and effective range parameters:

$$
\begin{aligned}
a & =(2.07 \pm 0.10)(\mathrm{GeV} / c)^{-1} \\
r & =(3.32 \pm 0.34)(\mathrm{GeV} / c)^{-1}
\end{aligned}
$$

LASS Lineshape - plot

LASS K pi S 1/2 Amplitude

Flatté Lineshape

- Also known as a coupled-channel Breit-Wigner

$$
R_{j}(m)=\frac{1}{\left(m_{0}^{2}-m^{2}\right)-i m_{0}\left(\Gamma_{\pi \pi}(m)+\Gamma_{K K}(m)\right)}
$$

- The decay widths in the $\pi \pi$ and KK systems are given by:

$$
\begin{aligned}
\Gamma_{\pi \pi}(m) & =g_{\pi}\left(\frac{1}{3} \sqrt{1-4 m_{\pi^{0}}^{2} / m^{2}}+\frac{2}{3} \sqrt{1-4 m_{\pi^{ \pm}}^{2} / m^{2}}\right) \\
\Gamma_{K K}(m) & =g_{K}\left(\frac{1}{2} \sqrt{1-4 m_{K^{ \pm}}^{2} / m^{2}}+\frac{1}{2} \sqrt{1-4 m_{K^{\circ}}^{2} / m^{2}}\right) .
\end{aligned}
$$

- The fractional coefficients come from isospin conservation and g_{π} and g_{k} are coupling constants for which we assume the values obtained by the BES experiment:

$$
\begin{aligned}
g_{\pi} & =(0.165 \pm 0.010 \pm 0.015) \mathrm{GeV} / c^{2} \\
g_{K} & =(4.21 \pm 0.25 \pm 0.21) \times g_{\pi}
\end{aligned}
$$

sPlots

[Nucl. Instrum. Meth. A 555 (2005) 356-369]

- The sPlots technique is a statistical tool that allows the distribution of a variable for a particular species, e.g. signal, to be reconstructed from the PDFs of other variables
- An sWeight is assigned to each event according to:

$$
{ }_{s} W_{n}\left(y_{e}\right)=\frac{\sum_{j=1}^{N_{s}} \mathbf{V}_{n j} f_{j}\left(y_{e}\right)}{\sum_{k=1}^{N_{s}} N_{k} f_{k}\left(y_{e}\right)}
$$

- Where NS is the number of species, V is the covariance matrix from the fit, f are the PDFs of the variables y, the subscript n refers to the species of interest and the subscript e refers to the event under consideration
- These sWeights have the property that:

$$
\sum_{e} W_{n}\left(y_{e}\right)=N_{n}
$$

- A histogram in a variable (not in the set y) can then be filled with each event weighted by its sWeight
- This histogram will reproduce the e.g. signal distribution of that variable
- sWeights can also be used e.g. in order to correctly deal with signal reconstruction efficiency (ε) variation on an event-by-event basis
- In this case a branching fraction can be correctly determined from:

$$
B F=\sum_{n} \frac{{ }_{s} W_{n}\left(y_{e}\right)}{\varepsilon_{n} N_{B \bar{B}}}
$$

