Constraints on the CKM Unitarity Triangle from Charmless 3-body Decays at BABAR

Thomas Latham

THE UNIVERSITY OF WARWICK

Overview

Introduction

- Detector & Dataset
- CP violation
- Analysis Techniques
- Theory Motivation
- Recent results from BABAR:
 - $\Box \quad B^{+} \to K^{+} \pi^{+} \pi^{-}$
 - $\square B^0 \to K_{\rm S} \pi^+ \pi^-$
 - $\Box B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$
- Conclusion

PEP II and BaBar

Dataset

- BABAR data-taking ended on 7th April 2008
- Total of ~531 fb⁻¹ recorded, ~432 fb⁻¹ at the Y(4S)
- Analyses presented here use either 232 or 383 million BB pairs

As of 2008/04/11 00:00

The CKM Mechanism

- CP violation in the Standard Model arises from a single phase in the quark-mixing (CKM) matrix
- Unitarity conditions of matrix can be expressed as triangles in complex plane
- Half of 2008 Nobel Prize in physics awarded to Kobayashi and Maskawa

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$V_{\rm CKM} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Direct CP Violation

- CP violation in decay
- $A \neq \overline{A}$ both Figs. (a) & (b)
- Rate asymmetry requires two amplitudes with both different weak and strong phases to contribute – Fig. (b)
- Observed in decays of neutral K and B mesons

Mixing-induced CP violation

- *CP* violation in interference between mixing and decay
- Occurs in decays of neutral B mesons to CP eigenstates
- Since it depends on *B*-mixing it is a time-dependent effect
- Necessitates measurement of separation of *B* vertices and tag flavour

Analysis Variables – Topological

- Light quark continuum cross section $\sim 3x \ b\overline{b}$
- B mesons produced almost at rest since just above threshold
- Use event topology to discriminate
- Combine variables in an MVA, e.g. Fisher, Neural Network or Decision Tree

Analysis Variables – Kinematic

Make use of precision kinematic information from the beams.

Search for $B^+ \to K^+ K^+ \pi^-$ and $B^+ \to K^- \pi^+ \pi^+$

- Highly suppressed in the Standard Model
 - BFs of only 10⁻¹¹ and 10⁻¹⁴ respectively
 - Significant signals would be clear sign of new physics
- Extended maximum likelihood fit to m_{ES}, ΔE and a Neural Network of topological variables
- Fit includes signal, continuum background and 5 *B*-background categories

Search for $B^+ \to K^+ K^+ \pi^-$ and $B^+ \to K^- \pi^+ \pi^+$

- No significant signals seen in either channel
- Upper limits calculated using Feldman-Cousins method, including systematic uncertainties
- Calculated upper limits are 1.6 x 10⁻⁷ and 9.5 x 10⁻⁷ respectively
- Improvements of approx factor 8 and 2 respectively
- Results published as rapid communication in Phys. Rev. **D78**, 091102 (2008)

Introduction to Dalitz-plot analysis

- Dalitz plot (DP) is a 2D visualisation of the complete phase space for decays of a spin-0 particle into 3 spin-0 particles (i,j,k)
 - e.g. decays of a *B* meson into combinations of π[±], π⁰, *K*[±], *K*⁰, η, η' etc.
- Any point in the DP must satisfy

 $m_B^2 + m_i^2 + m_j^2 + m_k^2 = m_{ij}^2 + m_{ik}^2 + m_{jk}^2$

- Traditionally plotted as m_{ik}^2 vs. m_{jk}^2
- Purely phase-space decays would uniformly populate the DP

An example Dalitz plot

- Resonances appear as bands of events in the Dalitz plot
- Position and size of band related to mass and width of resonance
- Resonance spin determines distribution of events along the band
- Exact pattern of events in Dalitz plot determined by interference between the various contributing states

CP Violation in Dalitz plots

- Measurement of relative phases of intermediate states gives greater sensitivity to CP violation effects e.g.
 - Direct CP violation with only relative weak phase
 - Sensitivity to both $sin(2\beta)$ and $cos(2\beta)$ in timedependent measurements
 - Sensitivity to γ by combining measurements
- Comes at the cost of model dependence

Isobar Model

 Model the complete 3-body decay as a sum of contributing amplitudes

- Both nonresonant and resonant amplitudes
- F = resonance dynamics
- c and θ are relative magnitudes and phases

Resonance Dynamics

Describe resonances by a product of factors

$$F = R \times X_B \times X_D \times T$$

- □ R = mass dependence, e.g. Breit-Wigner
- X = Blatt-Weisskopf form factors for resonance production and decay
- □ T = angular factor, e.g. Zemach formalism
- Together these determine the variation of the magnitude and phase over the Dalitz plot

Dalitz-plot analysis of charmless 3-body decays

Rich structure of possible intermediate resonant states in the Dalitz plot, e.g. K^* , ϕ , ρ , f_0

Interference allows measurement of relative phases

- Contributions from $b \rightarrow s$ (penguin), $b \rightarrow u$ (tree) and $b \rightarrow d$ (penguin) processes
 - Relative weak phase (γ) between tree and penguins
 - Possibility for direct CP violation

 $B^+ \rightarrow K^+ \pi^+ \pi^-$

Introduction to $B^+ \rightarrow K^+ \pi^+ \pi^-$

- Theoretical prediction and previous experimental hints of large A_{CP} in $B^+ \to \rho^0 K^+$
 - Both tree and penguin diagrams contribute
- No *CP* asymmetry expected in $B^+ \rightarrow K^{*0}\pi^+$ □ Any observation would be sign of new physics
- DP analysis is sensitive to both magnitude and phase differences
- Highest (BF x ε) of all $K\pi\pi$ modes
 - Knowledge of signal DP model determined here can feed into analyses of other modes
- BABAR results from 383 million BB pairs published in Phys. Rev. **D78**, 012004 (2008)

Details of $K^+\pi^+\pi^-$ Signal Model

Signal model contains:

- □ K^{*0}(892) Relativistic Breit-Wigner
- $K\pi$ S-wave LASS
- $K_2^{*0}(1430) RBW$
- □ $\rho^0(770) RBW$
- □ ω(782) RBW
- □ f₀(980) Flatté
- □ f₂(1270) RBW
- " $f_X(1300)$ " RBW (m and Γ consistent with $f_0(1500)$)
- $\Box \ \chi_{c0} RBW$
- Phase-space nonresonant

Plots from $K^+\pi^+\pi^-$ DP Fit

Fit Results from $K^+\pi^+\pi^-$ Analysis

Mode	Fit Fraction (%)	$\mathcal{B}(B^+ \to \operatorname{Mode})(10^{-6})$	A_{CP} (%)	DCPV Sig.
$K^+\pi^-\pi^+$ Total		$54.4 \pm 1.1 \pm 4.5 \pm 0.7$	$2.8 \pm 2.0 \pm 2.0 \pm 1.2$	
$K^{*0}(892)\pi^+; K^{*0}(892) \to K^+\pi^-$	$13.3\pm0.7\pm0.7\pm0.7{}^{+0.4}_{-0.9}$	$7.2\pm0.4\pm0.7{}^{+0.3}_{-0.5}$	$+3.2\pm5.2\pm1.1{}^{+1.2}_{-0.7}$	0.9σ
$(K\pi)_0^{*0}\pi^+; (K\pi)_0^{*0} \to K^+\pi^-$	$45.0 \pm 1.4 \pm 1.2 {}^{-12.9}_{-0.2}$	$24.5 \pm 0.9 \pm 2.1 {}^{+7.0}_{-1.1}$	$+3.2 \pm 3.5 \pm 2.0 {}^{+2.7}_{-1.9}$	1.2σ
$\rho^{0}(770)K^{+}; \ \rho^{0}(770) \to \pi^{+}\pi^{-}$	$6.54 \pm 0.81 \pm 0.58 \substack{+0.69 \\ -0.26}$	$3.56 \pm 0.45 \pm 0.43 {}^{+0.38}_{-0.15}$	$+44 \pm 10 \pm 4 {}^{+5}_{-13}$	3.7σ
$f_0(980)K^+; f_0(980) \to \pi^+\pi^-$	$18.9\pm0.9\pm1.7{}^{+2.8}_{-0.6}$	$10.3 \pm 0.5 \pm 1.3 {}^{+1.5}_{-0.4}$	$-10.6 \pm 5.0 \pm 1.1 {}^{+3.4}_{-1.0}$	1.8σ
$\chi_{c0}K^+; \chi_{c0} \to \pi^+\pi^-$	$1.29 \pm 0.19 \pm 0.15 \substack{+0.12 \\ -0.03}$	$0.70\pm0.10\pm0.10^{+0.06}_{-0.02}$	$-14 \pm 15 \pm 3 {}^{+1}_{-5}$	0.5σ
$K^+\pi^-\pi^+$ nonresonant	$4.5 \pm 0.9 \pm 2.4 ^{+0.6}_{-1.5}$	$2.4 \pm 0.5 \pm 1.3 {}^{+0.3}_{-0.8}$	_	_
$K_2^{*0}(1430)\pi^+;K_2^{*0}(1430)\to K^+\pi^-$	$3.40 \pm 0.75 \pm 0.42 ^{+0.99}_{-0.13}$	$1.85 \pm 0.41 \pm 0.28 {}^{+0.54}_{-0.08}$	$+5 \pm 23 \pm 4^{+18}_{-7}$	0.2σ
$\omega(782)K^+;\ \omega(782)\to\pi^+\pi^-$	$0.17 \pm 0.24 \pm 0.03 \substack{+0.05 \\ -0.08}$	$0.09 \pm 0.13 \pm 0.02 {}^{+0.03}_{-0.04}$		
$f_2(1270)K^+; f_2(1270) \to \pi^+\pi^-$	$0.91 \pm 0.27 \pm 0.11 \substack{+0.24 \\ 0.17}$	$0.50 \pm 0.15 \pm 0.07 ^{+0.13}_{-0.09}$	$-85 \pm 22 \pm 13 ~^{+22}_{-2}$	3.5σ
$f_{\rm X}(1300)K^+; f_{\rm X}(1300) \to \pi^+\pi^-$	$1.33 \pm 0.38 \pm 0.86 {}^{+0.04}_{-0.14}$	$0.73 \pm 0.21 \pm 0.47 ^{+0.02}_{-0.08}$	$+28\pm26\pm13{}^{+7}_{-5}$	0.6σ

First error is statistical, second systematic and third model-dependent. Significance of DCPV is statistical only.

Total NR branching fraction = $(9.3 \pm 1.0 \pm 1.2 + 6.7 \pm 1.2) \times 10^{-6}$

Determining γ from $K\pi\pi$

21st January 2009

RAL PPD Seminar

Determining γ from $K\pi\pi$ DPs

- Much recent theoretical activity in this area
- Main method involves $K^+\pi^-\pi^0$ and $K_S\pi^+\pi^-$ DPs
 - Ciuchini et al., Phys. Rev. D74, 051301 (2006)
 - Gronau et al., Phys. Rev. D75, 014002 (2007)
 - Gronau et al., Phys. Rev. D77, 057504 (2008) and D78, 017505 (2008)
- Other methods use $K_S \pi^+ \pi^0$; $K^+ \pi^+ \pi^- \& K_S \pi^+ \pi^-$; and B_s decays to $K^+ \pi^- \pi^0 \& K_S \pi^+ \pi^-$
 - Ciuchini et al., Phys. Rev. D74, 051301 (2006)
 - Bediaga et al., Phys. Rev. D76, 073011 (2007)
 - Ciuchini et al., Phys. Lett. B645, 201 (2007)

Determining γ from $K\pi\pi$ DPs

- Method from Ciuchini et al. and Gronau et al.
- Use $B \rightarrow K^*\pi$ modes to form isospin triangles
- $A_{ij} = A(B^0 \rightarrow K^{*i} \pi^j)$
- Φ_{3/2} = γ up to correction
 from EW penguins
- The amplitude magnitudes as well as ϕ , $\overline{\phi}$ and $\Delta \phi$ can be measured from Dalitzplot analyses of $K^+\pi^-\pi^0$ and $K_{\rm s}\pi^+\pi^-$

 $B^{0} \rightarrow K_{S}\pi^{+}\pi^{-}$

21st January 2009

RAL PPD Seminar

Introduction to $B^0 \rightarrow K_{\rm S} \pi^+ \pi^-$

- Phase ∆ ¢ can be determined from this DP from interference between:
 - $K^{*+}\pi^-$ and $\rho^0 K_S$ in the B^0 decay
 - $K^{*-}\pi^{+}$ and $\rho^{0}K_{S}$ in the \overline{B}^{0} decay
- This measurement does not require tagging or time-dependent analysis
- However, time-dependent analysis also allows measurements of β_{eff} from $\rho^0 K_S$, $f_0 K_S$

Time-dependent Dalitz-plot Analysis

- Combining both techniques leads to a very complex PDF
- Each point in the DP can have a different time evolution
 The different signal model components interfere as normal
 In addition the B⁰ and B
 ⁰ amplitudes interfere through mixing
 Effects of mis-tagging and the detector resolution on At
- Effects of mis-tagging and the detector resolution on ∆t measurement have to be taken into account

$$\mathcal{L}_{n}^{sig}(m_{+}^{2}, m_{-}^{2}, \Delta t, q_{tag}) = \frac{1}{\mathcal{N}} \sum_{c} f_{c} \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \times \left[\left(|\mathcal{A}|^{2} + |\overline{\mathcal{A}}|^{2} \right) \left(1 + q_{tag} \frac{\Delta D^{c}}{2} \right) - q_{tag} \langle D \rangle^{c} \left(|\mathcal{A}|^{2} - |\overline{\mathcal{A}}|^{2} \right) \cos \left(\Delta m_{d} \Delta t \right) + q_{tag} \langle D \rangle^{c} 2 \mathrm{Im} \left[\overline{\mathcal{A}} \mathcal{A}^{*} e^{-i\phi_{mix}} \right] \sin \left(\Delta m_{d} \Delta t \right)$$

Details of $K_{\rm S}\pi^+\pi^-$ Signal Model

Signal model contains:

- □ K^{*+}(892) Relativistic Breit-Wigner
- $K\pi$ S-wave LASS
- □ $\rho^0(770)$ Gounaris-Sakurai
- □ f₀(980) Flatté
- □ f₂(1270) RBW
- " $f_X(1300)$ " RBW (m and Γ consistent w/ $f_0(1500)$)
- $\Box \ \chi_{c0} RBW$
- Phase-space nonresonant

Fit Results $-B^0 \rightarrow K_{\rm S} \pi^+ \pi^-$

- BABAR preliminary results from 383 million \overline{BB} give: $2\beta_{eff}(f_0K_S) = (89 \pm 22 \pm 5 \pm 8)^\circ$
 - $2\beta_{\text{eff}}(\rho^0 K_{\text{S}}) = (37 \pm 19 \pm 5 \pm 6)^\circ$
- Errors are stat, syst, model
- Both results are compatible with measurements from charmonium
- Conference paper: arXiv:0708.2097 [hep-ex]

Fit Results – $B^0 \rightarrow K_{\rm S} \pi^+ \pi^-$

- BABAR preliminary result: $\Delta \phi = (-164 \pm 24 \pm 12 \pm 15)^{\circ}$
- Errors are stat, syst, model
- This phase difference includes the $B^0\overline{B}^0$ mixing phase (-2 β)
- Secondary solution excluded at >3σ

 $B^0 \rightarrow K^+ \pi^- \pi^0$

Introduction to $B^0 \rightarrow K^+ \pi^- \pi^0$

- Mode is self-tagging (from charge of kaon) so analysis does not involve flavour tagging or time-dependence
- BABAR have results from 232 million BB
 Also preliminary results from 454 million BB
- Analysis not yet performed by Belle

Details of $K^+\pi^-\pi^0$ Signal Model

Signal model contains:

- □ K^{*+}(892) Relativistic Breit-Wigner
- □ K^{*0}(892) Relativistic Breit-Wigner
- $(K\pi)^+$ S-wave LASS
- $(K\pi)^0$ S-wave LASS
- $\rho^{-}(770)$ Gounaris-Sakurai
- Phase-space nonresonant

Plots from $K^+\pi^-\pi^0$ DP Fit

Fit Results – $B^0 \rightarrow K^+ \pi^- \pi^0$

- BABAR results from 232 million BB pairs published in:
 - □ Phys. Rev. **D78**, 052005 (2008)
- Scans opposite show the results for ϕ and $\overline{\phi}$
- Presence of multiple solutions reduces precision of constraint
- Preliminary BABAR results on 454 million BB indicate much better separation between solutions
 - Likelihood scans of phase differences not yet completed
 - arXiv:0807.4567 [hep-ex]

Fit Results – $B^0 \rightarrow K^+ \pi^- \pi^0$

- BABAR results from 232 million BB pairs published in:
 - Phys. Rev. **D78**, 052005 (2008)
- Presence of multiple solutions reduces precision of constraint
- Preliminary BABAR results on 454 million BB indicate much better separation between solutions
 - Likelihood scans of phase differences not yet completed
 - arXiv:0807.4567 [hep-ex]

Constraining γ

21st January 2009

RAL PPD Seminar

Constraining γ

- BABAR results from $K_{\rm S}\pi^+\pi^-$ (arXiv:0708.2097) and $K^+\pi^-\pi^0$ (arXiv:0711.4417) combined together
 - Gronau et al., Phys. Rev. D77, 057504 (2008) and D78, 017505 (2008)

Dotted purple line – unconstrained $|R_{3/2}|$ Solid blue line – $0.8 \le |R_{3/2}| \le 1.2$

 $39^{\circ} < \Phi_{3/2} < 112^{\circ} (68\% \text{ CL})$

Constraining
$$\gamma$$

CKM constraint in presence of EW penguins is:

$$\overline{\eta} = \tan \Phi_{3/2} \left[\overline{\rho} - 0.24 \pm 0.03 \right]$$

Conclusion

- Charmless 3-body decays of *B* mesons allow measurements of all 3 Unitarity Triangle angles
 - □ Not mentioned in this talk TDDP analysis of $B \rightarrow \pi \pi \pi^0$ allows measurement of α and of *KKK*_S gives further information on β_{eff}
- The *B*-factories have reacted quickly to the theoretical developments regarding constraining γ with $B \rightarrow K\pi\pi$ decays
- Results available allow such a constraint to be formed
- Updated results expected soon from BABAR
 - Should help to resolve ambiguities
- Measurements from other $K\pi\pi$ modes, such as $B \rightarrow K_S \pi^+ \pi^0$, could help improve the precision
- Future experiments, such as LHCb and a possible Super Flavour Factory, will be able to improve precision of these results

Backup Material

General differences between BABAR and Belle $B \rightarrow K\pi\pi$ analyses

- Main difference is in approach to low mass $K\pi$ S-wave
- BABAR use the LASS parameterisation
 - Coherent sum of $K_0^*(1430)$ and effective range nonresonant that is constrained to be unitary
- BABAR analyses also have to include a phase-space NR term to account for NR events above LASS cut-off (~1.8 GeV/c²)
- Belle use $K_0^*(1430)$ as RBW and exponential shaped NR
- Belle parameterisation often suffers from multiple solutions where the fractions of the $K_0^*(1430)$ are very different
 - Preferred solution can often depend on which other terms are included in the DP model, e.g. $K_2^*(1430)$
- Neither approach is perfect but both seem to allow a pretty good fit to the data
- Does make comparison of results rather tricky

Systematic/Model dependence of DCPV in $\rho^0(770)K^+$

Details of BABAR $K_{\rm S}\pi^+\pi^-$ Analysis

Resonance Name	$ c_{\sigma} $	$\phi[\text{degrees}]$	$ \overline{c}_{\sigma} \ (\overline{c}_{\overline{\sigma}})$	$\overline{\phi}[\text{degrees}]$
$f_0(980)K_S^0$	4.0	0.0	2.8 ± 0.7	-88.6 ± 21.3
$ ho^0(770)K_S^0$	0.10 ± 0.02	58.6 ± 16.4	0.09 ± 0.02	21.3 ± 21.2
$f_0(1300)K_S^0$	1.9 ± 0.4	117.6 ± 22.6	1.1 ± 0.3	-15.2 ± 23.8
Nonresonant	3.0 ± 0.6	13.8 ± 14.3	3.7 ± 0.5	-16.2 ± 17.3
$K^{*+}(892)\pi^{-}$	0.136 ± 0.021	-60.7 ± 18.5	0.113 ± 0.018	102.6 ± 22.9
$K^{*+}(1430)\pi^{-}$	4.9 ± 0.7	-82.4 ± 16.8	7.1 ± 0.9	79.2 ± 20.5
$f_2(1270)K_S^0$	0.011 ± 0.004	62.9 ± 23.3	0.010 ± 0.003	-73.9 ± 27.8
$\chi_{c0}(1P)K_S^0$	0.34 ± 0.15	68.7 ± 31.1	0.40 ± 0.11	154.5 ± 28.6

Details of Belle $K_{\rm S}\pi^+\pi^-$ Analysis

Signal model contains:

- □ K^{*+}(892) Relativistic Breit-Wigner
- □ $K_0^{*+}(1430) RBW$
- □ $\rho^0(770)$ Gounaris-Sakurai
- □ f₀(980) Flatté
- □ f₂(1270) RBW
- " $f_X(1300)$ " RBW (m and Γ consistent w/ $f_0(1500)$)
- Three exponential shaped NR terms

Comparison with Belle – $B^0 \rightarrow K_S \pi^+ \pi^-$

- A new Belle preliminary result from 657 million BB: $\Delta \phi = (-1 \pm {}^{24}_{23} \pm 11 \pm 18)^{\circ}$ (errors are stat, syst, model)
- A second, almost degenerate, solution: Δφ = (+15 ± ¹⁹₂₀ ± 11 ± 18)°
- Difference between solutions is interference between K₀*±(1430) and NR
- These again include the $B^0 \overline{B}^0$ mixing phase (-2β)
- Apparent disagreement with the BABAR results

HFAG Averages

HFAG Averages

	siı	$n(2\beta^{eff}) =$	= sin(2¢		
b→ccs	World Av	erage		: 0.07 ±	0.02
	BaBar			0.28 ± 0.28 ±	0.03
-	Averade		LìÈ	- 0.67	+8.17
e	BaBar			0.57 ± 0.08 ±	0.02
¥	Belle		<u> </u>	$0.84 \pm 0.10 \pm$	0.04
F.,	Average			0.59 ±	0.07
¥.	BaBar			0.90 2	0.04
⊼ .	Averaria			$0.30 \pm 0.32 \pm 0.32 \pm 0.74 \pm $	0.08
<u>⊢</u> ≦"-	BaBar		ro 1 70	0.55 + 0.90 +	0.03
≚	Belle			- 0.87 ± 0.81 ±	0.08
N	Average			0.57 ±	0.17
ى ا	BaBar		• <mark>😌 B</mark> •	0.61 10.09 ± 0.09 ±	0.08
	Belle			• 9.64 波越±0.09±	0.10
	Average		-85	0.02 1 1997 23 A	0.01
<u> </u> ⊻	Belle		<mark>8 8</mark>	0.11 + 0.48 +	0.02
8	Averade	-		0.45 ±	0.24
67	BaBar			0.84	+0.16
≍.	Belle			0.00	>:8]}
e	Average			0.02	0.12
<u>×</u>	Balla	S S		$-0.72 \pm 0.71 \pm$	0.08
_¥	Averarie	L S		-0.40 ± 0.46 ±	0.41
<u>×</u> ⊼ ₈ .	BaBar			-4 0.97	+0.08
با م	Average			0.97	-8盤
¥ *	BaBar		9	0.88±0.08±	0.03
🖌	Belle		-	$0.68 \pm 0.15 \pm 0.05$	-0.13
<u> </u>	Average			ti 0.82 ±	0.07
-2	-		0	1	2

Details of Belle $K_{\rm S}\pi^+\pi^-$ Analysis

Details of Belle $K_{\rm S}\pi^+\pi^-$ Analysis

Decay channel	Sol. 1 Fraction $(\%)$	Sol. 2 Fraction $(\%)$
$K^{*+}(892)\pi^{-}$	9.3 ± 0.8	9.0 ± 1.3
$K_0^{*+}(1430)\pi^-$	61.7 ± 10.4	17.4 ± 5.0
$ ho^0(770)K_S^0$	6.1 ± 1.5	8.5 ± 2.6
$f_0(980)K_S^0$	14.3 ± 2.7	14.9 ± 3.3
$f_2(1270)K_S^0$	2.6 ± 0.9	3.2 ± 1.2
$f_X(1300)K_S^0$	2.3 ± 0.8	6.0 ± 1.6
$(K^0_S\pi^+)_{\rm NR}\pi^-$	57.2 ± 11.4	55.9 ± 13.3
$(K_S^0\pi^-)_{\rm NR}\pi^+$	2.9 ± 4.7	6.4 ± 3.7
$(\pi^+\pi^-)_{ m NR}K^0_S$	10.7 ± 3.5	7.7 ± 4.1
Total	167.1 ± 0.2	129.0 ± 0.2

Fit results of $K^+\pi^-\pi^0$ Analysis

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	isobar j	FF_j (%)	$B_j (10^{-6})$	A_{CP}^{j}
$(K\pi)_{0}^{+} \pi^{0}$ $24.3_{-2.6}^{+} - 3.0 \pm 6.7$ $8.7_{-0.9}^{-} - 1.3 \pm 2.2$ $-0.22 \pm 0.12_{-0.11}^{+} \pm 0.7$ $\rho^{-}(770)K^{+}$ $22.5_{-3.7}^{+} \pm 1.2$ $8.0_{-1.3}^{+0.8} \pm 0.6$ $+0.11_{-0.15}^{+0.14} \pm 0.07$ N.R. $12.4 \pm 2.6_{-1.2}^{+1.3}$ $4.4 \pm 0.9 \pm 0.5$ $+0.23_{-0.27}^{+0.045} \pm 0.055$ Total $102.3_{-4.0}^{+7.1} \pm 4.1$ $35.7_{-1.5}^{+2.6} \pm 2.2$ $-0.030_{-0.051}^{+0.045} \pm 0.055$	$K^{*+}(892)\pi^{-} K^{*0}(892)\pi^{0} (K\pi)_{0}^{*+}\pi^{-} (K\pi)_{0}^{*0}\pi^{0} \rho^{-}(770)K^{+} N.R.$ Total	$11.8^{+2.5}_{-1.5} \pm 0.6$ $6.7^{+1.3+0.7}_{-1.5-0.6}$ $26.3^{+3.1+2.1}_{-3.8-2.0} \pm 4.9$ $24.3^{+3.0+3.7}_{-2.6-3.0} \pm 6.7$ $22.5^{+2.2}_{-3.7} \pm 1.2$ $12.4 \pm 2.6^{+1.3}_{-1.2}$ $102.3^{+7.1}_{-4.0} \pm 4.1$	$4.2^{+0.9}_{-0.5} \pm 0.3$ $2.4 \pm 0.5 \pm 0.3$ $9.4^{+1.1+1.4}_{-1.3-1.1} \pm 1.8$ $8.7^{+0.9-1.3}_{-0.9-1.3} \pm 2.2$ $8.0^{+0.8}_{-1.3} \pm 0.6$ $4.4 \pm 0.9 \pm 0.5$ $35.7^{+2.6}_{-1.5} \pm 2.2$	$\begin{array}{c} -0.19^{+0.20}_{-0.15} \pm 0.04 \\ -0.09^{+0.21}_{-0.24} \pm 0.09 \\ +0.17^{+0.11}_{-0.16} \pm 0.09 \pm 0.20 \\ -0.22 \pm 0.12^{+0.13}_{-0.11} \pm 0.27 \\ +0.11^{+0.14}_{-0.15} \pm 0.07 \\ +0.23^{+0.19}_{-0.27}_{-0.10} \\ -0.030^{+0.045}_{-0.051} \pm 0.055 \end{array}$

Summary of $K^*\pi$ and ρK experimental measurements and theory predictions

	Branching Fraction (10-6)		A _{CP}	A _{CP} (%)	
Mode	Exp.	QCDF	Exp.	QCDF	
Κ *0π+	10.0 ± 0.8	8.9 ± 1.6	-2 ± 7	0.16 ± 0.16	
Κ *+π ⁰	6.9 ± 2.3	5.3 ± 0.8	4 ± 29	-41 ± 7	
Κ *+π ⁻	10.3 ± 1.1	9.1 ± 1.7	-25 ± 11	-48 ± 8	
Κ *0π0	2.4 ± 0.7	3.9 ± 0.8	-15 ±12	4.7 ± 1.1	
$ ho^+ K^0$	8.0 ± $^{1.5}_{1.4}$	10.3 ± 2.0	-12 ± 17	0.53 ± 0.21	
ρ ⁰ <i>K</i> +	3.8 ± 0.5	4.8 ± 0.9	42 ± ⁸ 10	46 ± 6	
ρ +K -	$8.6 \pm \frac{0.9}{1.1}$	13.4 ± 2.3	15 ± 6	31.4 ± 4.6	
$\rho^0 K^0$	$5.4 \pm \frac{0.9}{1.0}$	7.5 ± 1.3	1 ± 20	-3.3 ± 1.3	

Experimental numbers from HFAG Summer 2008, QCDF predictions from Chang et al., arXiv:0807.4295v3

Summary of $K^*\pi$ and ρK experimental measurements and theory predictions

- Agreement between experiment and theory is generally good
- Experimental precision on CP asymmetries much worse than theory errors
- Would be nice to have (updated) results from $K_{\rm S}\pi^{+}\pi^{0}$ and $K^{+}\pi^{0}\pi^{0}$, particularly given large A_{CP} prediction in $K^{*+}\pi^{0}$
- Most results now coming from Dalitz-plot analyses
 - Additional information in the phases can be used to reduce the model dependence in extracting γ

The Square Dalitz Plot

$$m' \equiv \frac{1}{\pi} \arccos \left(2 \frac{m_{K^+\pi^+} - m_{K^+\pi^+}^{\min}}{m_{K^+\pi^+}^{\max} - m_{K^+\pi^+}^{\min}} - 1 \right),$$

$$\theta' \equiv \frac{1}{\pi} \theta_{K^+\pi^+},$$

- Transformation of coordinates
- "Zooms" into the areas around the boundary of the conventional Dalitz plot
- Increases resolution in those areas of interest
- Used for all DP histograms in this analysis

LASS Lineshape

The LASS parameterisation of the Kπ S-wave consists of the K₀*⁰(1430) resonance together with an effective-range nonresonant component:

$$\mathcal{M} = \frac{m_{K\pi}}{q \cot \delta_B - iq} + e^{2i\delta_B} \frac{m_0 \Gamma_0 \frac{m_0}{q_0}}{(m_0^2 - m_{K\pi}^2) - im_0 \Gamma_0 \frac{q}{m_{K\pi}} \frac{m_0}{q_0}},$$

$$\cot \delta_B = \frac{1}{aq} + \frac{1}{2} rq.$$

We have used the following values for the scattering length and effective range parameters:

$$a = (2.07 \pm 0.10) \,(\text{GeV}/c)^{-1},$$

 $r = (3.32 \pm 0.34) \,(\text{GeV}/c)^{-1}.$

LASS Lineshape – plot

Flatté Lineshape

Also known as a coupled-channel Breit–Wigner

$$R_j(m) = \frac{1}{(m_0^2 - m^2) - im_0(\Gamma_{\pi\pi}(m) + \Gamma_{KK}(m))}$$

• The decay widths in the $\pi\pi$ and KK systems are given by:

$$\Gamma_{\pi\pi}(m) = g_{\pi} \left(\frac{1}{3} \sqrt{1 - 4m_{\pi^0}^2/m^2} + \frac{2}{3} \sqrt{1 - 4m_{\pi^\pm}^2/m^2} \right),$$

$$\Gamma_{KK}(m) = g_K \left(\frac{1}{2} \sqrt{1 - 4m_{K^\pm}^2/m^2} + \frac{1}{2} \sqrt{1 - 4m_{K^0}^2/m^2} \right).$$

• The fractional coefficients come from isospin conservation and g_{π} and g_{K} are coupling constants for which we assume the values obtained by the BES experiment:

$$g_{\pi} = (0.165 \pm 0.010 \pm 0.015) \text{ GeV}/c^2,$$

 $g_K = (4.21 \pm 0.25 \pm 0.21) \times g_{\pi}.$

sPlots

[Nucl. Instrum. Meth. A 555 (2005) 356-369]

- The sPlots technique is a statistical tool that allows the distribution of a variable for a particular species, e.g. signal, to be reconstructed from the PDFs of other variables
- An sWeight is assigned to each event according to:

$${}_{s}W_{n}(y_{e}) = \frac{\sum_{j=1}^{N_{s}} \mathbf{V}_{nj} f_{j}(y_{e})}{\sum_{k=1}^{N_{s}} N_{k} f_{k}(y_{e})}$$

- Where NS is the number of species, V is the covariance matrix from the fit, f are the PDFs of the variables y, the subscript n refers to the species of interest and the subscript e refers to the event under consideration
- These sWeights have the property that:

$$\sum_{e} {}_{s}W_{n}(y_{e}) = N_{n}$$

- A histogram in a variable (not in the set y) can then be filled with each event weighted by its sWeight
- This histogram will reproduce the e.g. signal distribution of that variable
- sWeights can also be used e.g. in order to correctly deal with signal reconstruction efficiency (ε) variation on an event-by-event basis
- In this case a branching fraction can be correctly determined from:

$$BF = \sum_{n} \frac{{}_{s}W_{n}(y_{e})}{\varepsilon_{n}N_{B\overline{B}}}$$