

Standard Model EWK Symmetry Breaking

Status of Tevatron running

Top Quark properties

Top Mass measurement

Standard Model Higgs Searches

Summary

Standard Model

The model describes successfully all the experimental data . What we know:

- SU(3) SU(2) U(1) basic symmetry
- 3 generations of quarks and leptons EM, Weak and Strong Force

No BSM particles or forces seen

What we do not know:

- Why 3 generations?
- What distinguishes the 3 generations?
- How is the symmetry broken?
- What is the origin of mass?

MANY OPEN QUESTIONS! Too many to list here !

Standard Model EWKSB

EWK theory unifies EM and Weak forces, but γ and W/Z masses are very different

Higgs mechanism explains SB

- Gives masses to the Z and the $W^{\!\pm}$
- Gives masses to charged lepton and quarks through the Yukawa interaction.
- Predicts mixing among the generations
- Predicts the existence of the Higgs boson

If the Higgs exist, new physics is necessary to stabilize its mass

Top is the heaviest quark. Yukawa coupling $g_t \sim 1$

Top Mass in the SM

- Quantum loop corrections to many EWK observables are sensitive to the top mass
- Top Mass is highly correlated to M_W and M_H in EWK theory

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$
$\Delta \alpha_{had}^{(5)}(m_z)$	0.02758 ± 0.00035	0.02767	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-
σ_{had}^0 [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.743	
A ^{0,I}	0.01714 ± 0.00095	0.01643	_
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1480	
R _b	0.21629 ± 0.00066	0.21581	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
Ab	0.923 ± 0.020	0.935	
Ac	0.670 ± 0.027	0.668	
AI(SLD)	0.1513 ± 0.0021	0.1480	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.377	
Γ _w [GeV]	2.097 ± 0.048	2.092	
m _t [GeV]	172.6 ± 1.4	172.8	
March 2008			0 1 2 3

EWK fit using 15 SM precision measurements gives very large error on $M_{\rm T}$ and $M_{\rm H}$

Addition of M_W and Γ_W reduces uncertainty

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

I will talk about the status of top mass measurements and Higgs searches at CDF, show also combined results with D0

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

The Tevatron

Record luminosity: 3.18x10³² cm⁻² s⁻¹ July 5, 2008

Tevatron has been doing very well. Expect 6-7 fb⁻¹ by end FY09

Depending on funding, Tev will run through 2010: expect 7-9 fb⁻¹

CDF II Detector

Top Production and Decay

Reconstruct top events t $\overline{t} \rightarrow W^- b W^+ \overline{b}$

Many channels, depending on decay of the two W's Events in 2 fb⁻¹ after optimized selections

- Dilepton : 2 leptons, missing energy (2v), 2 jets
 - ~120 candidate events , S/B~1:1. S/B ~ 4:1 (≥ 1 b-tag, ~50 events)
- Lepton+jets : 1 lepton, missing energy (1v), 4 jets ~370 candidate events, S/B ~ 4:1 (with ≥ 1 b-tag)
- All jets : 6 jets
 - ~ 490 events , S/B ~ 2:3 (2 b-tags + NN selection)

Main requirements for top property measurements:

- Need tagging of b-jets to achieve the S/B ratio shown above.
- Need good jets reconstruction to reduce systematics from: detector effects, absolute Jet Energy Scale (JES), etc.

Tools: tagging of b-jets

7 layers of detectors in central region, starting at2.5 cm ending at 22 cm.

Good resolution on impact parameter. Allows displaced vertex tagging

Efficiency per b-jet = $(40 \pm 3)\%$ Efficiency for c-jet = $(9 \pm 2)\%$

Effic. per top event = $(60 \pm 3)\%$ For H \rightarrow bb, M=120 = $(60 \pm 3)\%$

Mistag rate = (0.48 ± 0.04) %

Tools: Jet Reconstruction

- Use calorimeter information only
- Jet calibration done in many steps

Quadratic sum of all contributions

• 3% systematics at high p_T

0.1

Source of the largest uncertainty on the top mass measurement

L+jets:Sample Composition

- Event Selection
 - Isolated lepton, P_T > 20 GeV
 - MET > 20 GeV (neutrino)
 - N (jets): only 4 jets with E_T >20 GeV
 - ≥1 b-tag by the SVX algorithm
- Background :
 - Mistag in W+light quarks
 - non-W QCD
 - Physics background: Wbb, Wcc
 - Single top, WW, WZ etc.

		-
Background	1 b-tag	≥ 2 b-tags
non-W QCD	13.8 ± 11.5	0.5 ± 1.5
W+q(mistag)+WW,WZ,ZZ	21.8 ± 3.6	0.8 ± 0.1
$W+bar{b},car{c},c$	26.1 ± 10.2	3.4 ± 1.4
Single top	3.0 ± 0.2	0.9 ± 0.1
Total background	64.7 ± 16.3	5.5 ± 2.6
Predicted $t\bar{t}$ signal	182.6 ± 24.6	69.4 ± 11.2
Events observed	284	87

In 1.9 fb-1 find 371 events
Estimated background:
70 ± 17 events

Top Physics studies

Checking production mechanism:

Standard Model

ttbar cross section qq/gg production ratio Single Top production Forward-Backward Asymmetry

New Physics

X--> t t resonant production G(massive gluon) --> ttbar W'--> t b use single top sample t '--> search for heavy top-like quark. t t --> stop pair production

Top Cross section (I+jets)

 H_{T} >250 GeV Missing E_T>30 GeV ≥1 tight tag Counting experiment: $\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{(\epsilon_{tag} * SF) \left(\epsilon_{pretag} \int \mathcal{L}dt\right)}$

Signal region: 416 tags, 75±15 bkg events

 σ = 8.2 ± 0.5 (stat) ± 0.8 (sys) ± 0.5 (lumi) pb

Top Cross Sections

CDF t t cross section measurements done in many channels, agree with QCD calculations. Single top production agrees with EWK expectation

CDF-D0 results ttbar

Single Top production

Measurements on:

- Test SM properties
 - Top Charge
 - Branching ratios (V_{tb})
 - W helicity (V-A)

No evidence for deviations from Standard Model expectations found

- Non SM decays
 - $\bullet \quad t \to H^+ \, b$
 - $t \rightarrow Z q$ (FCNC)

Top Mass Data sample

Comparison of data to signal+expected background obtained by Monte Carlo and data (for non-W background) is very good.

Main challenge: reconstruct mass at the parton level

- We reconstruct $p p \rightarrow t t \rightarrow W b W b \rightarrow j_1 j_2 b I v b$
- We do not measure neutrino's. We measure jets, not quarks.
- Major systematics is in parton kinematics from jets (JES)
- Will use the W \rightarrow j₁ j₂ to determine Δ_{JES} in place.

- For each event we evaluate a likelihood as a function of the top mass and Δ_{JES} (related to the jets momenta measurements)
- All possible jet permutations are included with weights = wi.

 We integrate over phase space (d Φ) and Matrix Element (M) for t t production and decay.

- From 32 parameters in

 $z_1 + z_2 = q q' b_1 + lep v b_2$,

assumptions on incoming partons, lepton masses, charged lepton P and energy-momentum conservation leave a 19dimensional integration, performed by Quasi-Monte Carlo method.

- Integration variables:

 $M_1{}^2$ and $M_2{}^2$, the hadronic and leptonic top mass squared $m_1{}^2$ and $m_2{}^2$, the hadronic and leptonic W mass squared $\beta = log(\rho_q/\rho_{q'})$, log of ratio of momenta of the two q from W $P_T(t\ t)$, priors from MC

 $\Delta\eta$ (parton-jet), $\Delta\Phi$ (parton-jet) for each jet. Mass of each p-jet. All jet priors from MC

- Likelihood parameters are m_t and Δ_{JES}
- We shift each jet by the factor $JES = 1 + \Delta_{JES} \times \sigma_{JES}(p_T, \eta)$ where σ (p, m) is the evetemetic uppertainty on the jet

where $\sigma_{JES}(p_T,\eta)$ is the systematic uncertainty on the jet p_T

- Δ_{JES} is determined using the decay $W \rightarrow j_1 j_2$ and using the measured value for the W mass
- Precision on Δ_{JES} is determined by the statistics we have, thus a systematics uncertainty is now a statistical one

Top Mass: Acceptance (4)

t t acceptance

Strong dependence on the top mass and on $\Delta_{\rm JES}$ and on $m_{\rm t.}$

Due to the 20 GeV threshold on the 4 jets

Top Mass: Transfer Functions (5)

- The transfer functions for a given parton x, give the probability that we observe y. Detector effects, resolutions etc. are included
- Both angular and P_T transfer functions are used
- Multiplied by efficiency for proper normalization
- Transfer functions depend on jet mass as well as on P_T (in η bins). Also they are evaluated for 25 values of Δ_{JES} .

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

$$\log L_{\text{sig}} = \sum_{i} \left[\log L_{i} - f_{\text{bg}}(q_{i}) \log L(\text{background}) \right]$$

Log(Likelihoods) for each event are added together

 f_{bg} is the fraction of events like event i , which are background.

 $f_{bg}(q) = B(q)/(S(q)+B(q))$

Background ME is not used

Background contribution is subtracted.

Top Mass: Likelihood cut(7)

- After background subtraction we apply a cut on the final likelihood
- About 35% of the events do not behave according to our model: jets due to Initial or final state radiation W decays into taus contamination from other top topologies
- Background events have a low L tail

likelihood cut efficiency

Type of event	Total	1-tag	>1-tag
Good signal	96.6%	96.0%	98.0%
Bad signal	80.2%	80.5%	79.5%
Background	74.4%	74.5%	71.8%

We loose only 3.4% signal events while rejecting 19.8% of bad signal and 25.6% of background

We use 12 mass point between 160 and 185 GeV/c² to calibrate the method

ine i

Top Mass: Systematics (9)

Systematics on the measurement: Method: calibration, background (3 terms)

Physics: MC generators, ISR/FSR, PDF's, background Q²

Detector: JES, lepton p_{T} , permutation weights, pileup

Systematic source	$\Delta m_t \; ({ m GeV}/c^2)$
Calibration	0.13
MC generator	0.37
ISR and FSR	0.50
Residual JES	0.60
b-JES	0.36
Lepton P_T	0.18
Permutation weights	0.01
Pileup	0.05
PDFs	0.41
Background: fraction	0.27
Backg: composition	0.24
Backg: average shape	0.04
Backg: Q^2	0.08
Total	1.11

Top Mass results (10)

2D likelihood from data (302 ev.)

Comparison of MC likelihood with data: quite good

 $M_{top} = 171.4 \pm 1.1 \text{ (stat.)} \pm 1.0 \text{ (JES)} \pm 1.1 \text{ (syst)} \text{ GeV/c}^2 = 171.4 \pm 1.8 \text{ GeV/c}^2$ Also find $\Delta_{JES} = (0.03 \pm 0.31)$, i.e., statistics limited Best CDF mass measurement with 1.9 fb⁻¹

Top Mass summary

New measurement $M_t=171.4 \pm 1.8 \text{ GeV/c}^2$ not yet included

EWK Fit: Winter 2008

Winter Conferences EWK Fit, gives $MH < 190 \text{ GeV/c}^2$

Winter 2008 best Fit

 $\begin{array}{l} M_{H} = 87^{+36} \text{-}_{27} \, GeV/c^{2} \\ \text{and} \\ M_{H} < 160 \, GeV/c^{2} \, \text{at} \, 95\% \, CL \end{array}$

Direct limit: M_H > 114 GeV at 95% CL adding the direct limit

 M_H < 190 GeV/c² at 95% CL

SM Higgs Searches

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

bkg=661 ev

New

77 Higg

22

Physics?

Higgs Searches

Searches are becoming sophisticated : new tools are being used

- Increase lepton acceptance:
 - Use isolated tracks in μ or e ID gaps
 - Add other triggers
 - Increase acceptance by 25% for μ (WH)
 - Increase acceptance by 7% for lep. (WW)

- Neural Network b-tagging to reduce mistag and charm jets
- Use Matrix Element Integration to distinguish signal from background

$$P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \epsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$$

parton level quantities
Matrix Element Transfer functions

 Use Multivariate approach (Neural Network) to separate signal from background

WH→lvbb

- Selecting W+2jets events:
- 1 Isolated high P_T lepton (>20 GeV)
- Large missing E_T >20 GeV
- 2 jets with E_T>20 GeV and |eta|<2</p>
- B-tagging: 2b(tight+loose) + 1b(tight)

Main Backgrounds

- W+ bb,cc : dominant
- Wqq' mistag
- Non-W QCD
- t t, single t, WW, WZ

Verify background calculation on all jet multiplicities

$WH \rightarrow Ivbb$

Two-jet mass distributions show no excess

Data consistent with SM backgrounds

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

WH → Ivbb Low Mass Limit

2.1 fb⁻¹ limit at M_H =115 combining all 6 classes of events:

Observed/expected limit: 6.4/6.4xSM at M_H=115

For low Higgs mass many channels have been studied. They all contribute to the final limit (see later)

WH	lvbb	~40%
ZH	llbb	~10%
ZH	vvbb	~40%
WH	(l) v b b	~10%
VH	$\tau \tau$ + 2 jets	~10%
VH	jjbb	~10%

BERKELEY L

 $H \rightarrow WW \rightarrow IIvv$: 2 opp-sign Leptons + Met

WH \rightarrow WWW*->I[±]I[±]vvX: 2 same-sign Leptons + Met

Major Backgrounds: WW, WZ, ZZ, top, QCD...

Higgs \rightarrow WW \rightarrow IvIv

Event selection:

- 2 OS leptons, $P_{T1} > 20$, $P_{T2} > 10$ GeV (use ISOTR + good ID)
- N(jets) ≤ 1
- MET > 20 GeV

acceptance for both W into leptons: 6%

$H \rightarrow IvIv expect 9.5 \pm 1.1$ signal events in 2.4 pb-1

Backgrounds: $M_H = 160 \text{ GeV}/c^2$ CDF Run II PreliminaryWW 9.5 ± 1.1 WW 300.3 ± 38.1	
$H \to WW$ 9.5 ± 1.1 140 WW 300.3 ± 38.1 120	.= 2.4 fb ⁻¹
WW 300.3 ± 38.1 120	SrD HWW W+jets Wγ
	tt WZ ZZ
VZ 20.5 ± 3.1 100	DY JWW -Data
ZZ 18.2 \pm 2.7	
$VV\gamma$ $t\bar{t}$ 20.8 \pm 3.8	
M/Z DY 104.0 ± 23.0	
$W\gamma$ 72.4 ± 18.7 \downarrow \downarrow \downarrow \downarrow	
$W + jets$ 89.2 ± 22.8	
Total BG 626 \pm 54 0^{0} 20 40 60 80 100 120	140
Data 661	Met

$$Higgs \rightarrow WW \rightarrow Iv Iv$$

Analysis based on ME integration + NN discriminant

$$P(\vec{x}_{obs}) = \frac{1}{\langle \boldsymbol{\sigma} \rangle} \int \frac{d\boldsymbol{\sigma}_{th}(\vec{y})}{d\vec{y}} \, \boldsymbol{\varepsilon}(\vec{y}) \, G(\vec{x}_{obs}, \vec{y}) \, d\vec{y}$$

Use ME for 5 background processes: HWW, WW, ZZ, W γ , W+jets

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

Higgs → WW→ IvIv

L = 2.4 fb

 10^{3} 10^{3} 10^{2} 1

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

CDF II Preliminary

observed/expected 5.0/4.5 x SM at M=115 GeV/c² observed/expected 1.6/2.6 x SM at M=160 GeV/c²

observed/expected 3.7/3.3 x SM at M=115 GeV/c²

observed/expected 1.1/1.6 x SM at M=160 GeV/c²

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

Tevatron Sensitivities

Higgs Sensitivity improves better then 1/sqrt(L)

- with more data, new handles
- more advanced analysis techniques

Future prospects

With 8 fb⁻¹ of data by 2010, CDF and D0 could

- either exclude Higgs with M_H <185 @ 95% CL
- or find 3σ evidence for Higgs near M_H=260 GeV/c²

Summary

- Tevatron doing well: increasing integrated luminosity rate, may run to 2010 (depending on funding)
- CDF is taking lots of data and can sustain data taking and analysing through 2010, if the run is extended
- Results on top properties coming out continuously: no deviation from SM observed as yet
- Top mass measurement has a 1.8/171.4 =1.1% precision Statistical and systematic uncertainties are ~ equa I
- Higgs searches are very active: improving the methodology to obtain limits at a faster rate than by adding data
- Of course, with LHC starting soon, the saga will continue!!

BACKUP SLIDES

MORE INFO

Lina Galtieri, Pursuing EWKSB at CDF. RAL, July 16 -2008

Non-standard Top production

Search for resonant t \overline{t} states

 $pp \rightarrow X^0 \rightarrow t \overline{t}$

Reconstruct the t \overline{t} system by ME techniques, then test for excess

Search for heavy top, 4th generation

 $t'\,\rightarrow\,W\,q$

Motivated by BSM models 2D fit of H_T -vs M(t t)

Exclude topcolor Z' (Γ =1.2%M_{X0}) for M_{X0}< 725 GeV/c² @ 95%CL

Exclude for $M_{t'}$ < 284 GeV/c² @ 95%CL

Test of pQCD calculations

- Could be used to improve gluon PDF uncertainty
- Sensitive to BSM production mechanisms
- The challenge: need to discriminate between identical final states
- The number of low P_T tracks (between 0.3 and 2.9 GeV/c) is correlated with the number of gluons in the sample

 $\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt) = 0.07 \pm 0.14(stat) \pm 0.07(syst)$

15

<u>ຍ</u> 14

samplo

➡ W+0 jet ➡ W+1 iet

W+2 iet

← Dijet 80-100 GeV ← Dijet 100-120 GeV ← Dijet 120-140 GeV

Copied from Igor, modify, add the the other one, see Veronica

Measurement of $\sigma(gg \rightarrow tt)/\sigma(pp \rightarrow tt)$

Top into H⁺ Search

MSSM predicts $H^+ \rightarrow cs$ for $tan\beta < 1$ Assume BR($H^+ \rightarrow cs$) =1

2.2 fb⁻¹

Fit dijet invariant mass with W and H+ templates, assuming 10% t \rightarrow H+ decay.

No evidence found

Quasi-MC Integration

- Best integration method in high dimensions. Started seeing significant practical use in late 80s. To our knowledge, the first study of QMC for HEP-related integrals was published in 2006 (by Kleiss and Lazopoulos).
- Quasi-MC integration uses "low-discrepancy" sequences (we use a variant of the Sobol sequence, plotted on the left) to provide more uniform coverage of the phase space.
- For "well-behaved" functions, convergence rate is guaranteed to be at least as good as $O(\log(N)^d/N)$. Compare with $O(1/\sqrt{N})$ for standard MC.
- We use QMC for 18 dimensions out of 19. Convergence is estimated empirically, from the smoothness of the likelihood curves.

