Determination of γ **from** $B^{\pm} \rightarrow DK^{\pm}$: LHCb and CLEOC Jim Libby (University of Oxford)

Outline

Motivation for the precise determination of γ LHCb - Overview – Status • Measuring γ with $B^{\pm} \rightarrow DK^{\pm}$ at LHCb Complementary measurements of D decay at CLEO-c

CP violation in weak decays of quarks

- *CP* violation implies differences between matter and antimatter
- In the Standard Model the weak and flavour eigenstates of the three generations of quarks are related by a unitary matrix
- A complex phase introduces CP violating effects
- Represented in terms of the Unitarity Triangle

$$\mathbf{V}_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \propto e^{i\gamma} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} \propto e^{i\beta} & V_{ts} & V_{tb} \end{pmatrix}$$

All sides and angles can be measured in *b*-hadron decay

Searching for new physics

- Non Standard Model particles contribute within the virtual loops
- Differences between tree-level and loop-level triangles
 - Signature of new physics
- Complements direct searches

19th December 2007

LHC Status

Last dipole lowered April 26th this year! (First was in March 2005)

Last interconnect – Nov 2007

Quad triplet remediation – Sep 2007

Latest official schedule (August '07) had beam commissioning beginning in May '08, with then 2 months estimated before first 14 TeV collisions

Since then, there have been problems, eg. with shielding bellows in cold interconnects

19th December 2007

Warm up of sector 7-8

RAL Seminar

5

The LHCb Experiment

- Dedicated experiment for precision measurement of CP violation and rare decays of b-hadrons (and charm) at the LHC
- □ Collider-mode operation at same time as the general-purpose detectors, with less-focused beams \rightarrow most events have a single pp interaction

LHCb in a slide

- *pp* collisions at a centre of mass energy of 14 TeV
 10¹² bb/year
- Ring Imaging Cherenkov detectors
 - hadron ID for momentum from 2 to 100 GeV/c

- First level hardware trigger rate from $10 \rightarrow 1$ MHz
 - 10 MHz the rate of bunch crossings with 1 or more interaction
 - Bunch crossing rate 30 MHz (offset interaction point)
- Software Higher Level Trigger (HLT):
 - inclusive and exclusive selections to reduce storage rate to 2 kHz

Si Vertex Locator (VELO)

19th December 2007

- 21 stations of Si wafer pairs with *r* and *\phi* strip readout
- Split in two halves to allow retraction from beam line
 - When closed 8 mm from beam
- Both detector halves now completed, installed in the pit

9

Readout: Hybrid PhotoDiodes HPD – 1024 pixels – LHCb development

Status: RICH2 ready: full DAQ exercised RICH1: full commissioning early 2008 $\pi\pi$ invariant mass

Trigger Full bandwidth for flavour unlike GPDs

Hardware trigger (L0)

> Fully synchronized (40 MHz), 4 μs fixed latency

> High p_T particles: μ , $\mu\mu$, e, γ and hadron

 \succ (typically p_T ~1-4 GeV/c)

1 MHz (readout of all detector components)

Software trigger (HLT)

- Full detector info available, only limit is CPU time
- Use more tracking info to re-confirm L0+high IP
- Full event reconstruction: exclusive and inclusive streams tuned for specific final states

L0 HLT and L0×HLT efficiency

19th December 2007

View of the cavern

Introduction $B^{\pm} \rightarrow DK^{\pm}$

• $B \rightarrow DK$ decays involve $b \rightarrow c$ and $b \rightarrow u$ transitions

- Access γ via interference if D⁰ and $\overline{D^0}$ decay to the same final state
- These measurements are theoretically clean
 - No penguin \Rightarrow CKM standard candle
 - largest correction is sub-degree from D-mixing
- LHCb looking at a number of strategies to study such decays
 - B⁺: Atwood-Dunietz-Soni ('ADS'), 3 and 4 body Dalitz Plot Anal.

RAL Seminar

Strong phase difference

$$B^{\pm} \longrightarrow D(K^{0}_{S}\pi^{+}\pi^{-})K^{\pm}$$

$$e^{\pm} \longrightarrow D(K^{0}\pi^{+}\pi^{-})K^{+}$$

$$A^{-} = f(m^{2}_{-}, m^{2}_{+}) + r_{B}e^{i(-\gamma+\delta)}f(m^{2}_{+}, m^{2}_{-})$$

$$A^{+} = f(m^{2}_{+}, m^{2}_{-}) + r_{B}e^{i(\gamma+\delta)}f(m^{2}_{-}, m^{2}_{+})$$

$$m_{\pm} = K^{0}_{S}\pi^{\pm} \text{ invariant mass and } f(m^{2}_{\pm}, m^{2}_{+}) \text{ Dalitz amplitudes}$$

$$Assume \text{ isobar model (sum of Breit-Wigners)}$$

$$M^{-}_{K}(GeV/c^{2}) \xrightarrow{0}{} \xrightarrow{0}$$

Current e⁺e⁻ results

Current best direct constraints on γ:

PRD 73, 112009 (2006) hep-ex/0607104

 $\phi_3 = (53^{+15}_{-18}(\text{stat}) \pm 3(\text{syst}) \pm 9(\text{model}))^\circ$ [Belle]

 $\gamma = (92 \pm 41(\text{stat}) \pm 11(\text{syst}) \pm 12(\text{model}))^{\circ}$ [BABAR]

- Based on ~300 events each (1/3 of final data set)
- However, large error from isobar model assumptions
- BABAR and Belle use large samples of flavour tagged $D^{*+} \rightarrow D^0 \pi^+$ events to find parameters of the isobar model
 - Excellent knowledge of $|f|^2$ but phases less well known
- Model uncertainties from assumptions about the resonance structures in the model

Isobar model uncertainty

BABAR (PRL 95 121802,2005) Resonance Amplitude Phase (deg) Fit fraction $K^{*}(892)^{*}$ 0.586 1.781 ± 0.018 131.0 ± 0.8 $K_0^*(1430)$ 2.45 ± 0.08 -8.3 ± 2.5 0.083 $K_{2}^{*}(1430)$ 1.05 ± 0.06 -54.3 ± 2.6 0.027 $K^{*}(1410)^{-}$ 0.52 ± 0.09 154 ± 20 0.004 $K^*(1680)^ 0.89 \pm 0.30$ -139 ± 14 0.003 $K^{*}(892)^{+}$ 0.180 ± 0.008 -44.1 ± 2.5 0.006 $K_0^*(1430)^+$ 0.002 0.37 ± 0.07 18 ± 9 $K_{2}^{*}(1430)^{+}$ 0.075 ± 0.038 -104 ± 23 0.000 $\rho(770)$ 1 (fixed)0 (fixed) 0.224 $\omega(782)$ 0.0391 ± 0.0016 115.3 ± 2.5 0.006 0.482 ± 0.012 -141.8 ± 2.2 0.061 $f_0(980)$ $f_0(1370)$ 113.2 ± 3.7 0.032 2.25 ± 0.30 $f_2(1270)$ 0.922 ± 0.041 -21.3 ± 3.1 0.030 $\rho(1450)$ 0.52 ± 0.09 38 ± 13 0.002 1.36 ± 0.05 -177.9 ± 2.7 0.093 σ 0.340 ± 0.026 153.0 ± 3.8 0.013 σ' Non Resonant 3.53 ± 0.44 128 ± 6 0.073

Most challenging aspects of the model uncertainty come from Kπ and ππ Swave

Fit to flavour tag sample

$B^{\pm} \rightarrow D(K^{\theta}_{S}\pi^{+}\pi^{-})K^{\pm} \text{ at LHCb}$

 Simulation studies performed to determine the expected yields and backgrounds at LHCb

- One 'nominal' year of data-taking 2 fb⁻¹
- Total luminosity goal 10 fb⁻¹
- Selection studies performed on PYTHIA/EVTGEN/GEANT4 simulated samples of signal and background events

Limited statistics available for background estimates

- 34 million *b*-inclusive events corresponds to ~15 minutes of data taking at nominal luminosity
- Trigger simulation is applied for Level-0 and large impact parameter with p_t HLT

$B^{\pm} \rightarrow D(K^{\theta}_{S}\pi^{+}\pi^{-})K^{\pm} \text{ at LHCb}$

- Selection based on large impact parameter, RICH particle ID and good p resolution
- Efficiency = 0.7×10^{-3}
- Backgrounds:
 - $B^{\pm} \rightarrow D(K^{0}{}_{S}\pi^{+}\pi^{-})\pi^{\pm}$ B/S=0.24
 - Combinatoric
 B/S<0.7 at 90% c.l.

$\frac{s_{\text{eq}}}{s_0} = \frac{\sigma = 15 \text{ MeV}}{\sigma = 15 \text{ MeV}}$

(LHCb-048-2007)

5240 5260 5280 5300 5320 5340 B Mass (MeV)

5000 events/2fb⁻¹

5200

5220

Model uncertainty impact on LHCb

The model-dependent likelihood fit yields an uncertainty on γ between 7-12° for an r_B=0.1
 – Range represents differing assumptions about the background

• However, the current model uncertainty is 10-15° with an $r_B = 0.1$

– Uncertainties $\sim 1/r_B$

Without improvements LHCb sensitivity will be dominated by model assumptions within 1 year of data taking

Motivates a model-independent method that relies on a binned analysis of the Dalitz plot

 Disadvantage is that information is lost via binning

Binned method

- Proposed in the original paper by Giri, Grossman, Soffer and Zupan and since been extended significantly by Bondar and Poluektov
 - GGSZ, PRD **68**, 054018 (2003)
 - BP, most recently arXiv:0711.1509v1 [hep-ph]
- Bin the Dalitz plot symmetrically about $m_2^2 = m_2^2$ then number of entries in B⁻ decay given by:

 \propto # events in bin of flavour tagged D⁰ decays

$$N_{i}^{-} \propto \int_{D_{i}} \left| f(m_{-}^{2}, m_{+}^{2}) \right|^{2} dD + r_{B}^{2} \int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} dD$$

+ $2 \sqrt{\int_{D_{i}} \left| f(m_{-}^{2}, m_{+}^{2}) \right|^{2} dD} \int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} dD} (x_{-}c_{i} + y_{-}s_{i})$
 $x_{+} = r_{B} \cos(\delta_{B} \pm \gamma) \quad y_{+} = r_{B} \sin(\delta_{B} \pm \gamma)$

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma) \quad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

'Cartesian coordinates'

19th December 2007

RAL Seminar

Average cosine and sine of strong phase difference between D⁰ and **D⁰ decay amplitudes** $(\Delta \delta_{\rm D})$ in this bin

Binned method continued

- Can determine s_i and c_i at the same time as extracting γ , r_B and δ_B from *B* data
 - $\begin{array}{l} -3 + N_{bins} \text{ free parameters } (c_i = c_{-i}) \\ \text{and } s_i = -s_{-i}) \end{array}$
 - Huge loss in γ sensitivity not practical until you have O(10⁶) events (2500/fb⁻¹ @ LHCb)
- However, **CP-correlated** $e^+e^- \rightarrow \psi'' \rightarrow D^0 D^0$ data where one decay is to $K_S \pi \pi$ and the other decays to a CP eigenstate and $K_S \pi \pi$ allows c_i and s_i to be determined, respectively

Enter CLEO-c

CLEO is the grand-daddy of flavour physics, with history of achievement dating back over 25 years

CLEO-c is latest incarnation. Dedicated programme of data-taking at and above the $c\overline{c}$ threshold Important studies for LQCD and B physics

Oxford LHCb physicists (with Bristol) have joined CLEO-c in order to measure quantities essential for the γ studies

Cornell University, Ithaca NY, USA

CLEO-c detector

CLEO-c data samples

CLEO-c: Oct. 2003 – April Fool's Day 2008 **3686MeV**, 54 pb⁻¹, N(ψ (2S)) \approx 27M e⁺e⁻ $\rightarrow \psi$ (**2S**) $\rightarrow \pi\pi$ **J**/ ψ , $\gamma\chi_c$ etc. **3773MeV**, 800pb⁻¹ delivered, ~3 milion ψ (*3770*) $\rightarrow D^0 \overline{D^0}$ **4170MeV**, 195 pb⁻¹ \rightarrow ~ 300pb⁻¹ \rightarrow more \rightarrow ~720pb⁻¹, $D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}$ **3970–4260MeV** energy scan, 60pb⁻¹ in 12 points

CLEO-c: double tagged $\psi(3770)$ events

CLEO-c has collected ~ 800 fb⁻¹ at the ψ (3770) DDbar produced in quantum entangled state:

$$e^+e^- \rightarrow \psi'' \rightarrow \frac{1}{\sqrt{2}} \left[D^0 \overline{D}{}^0 - \overline{D}{}^0 D^0 \right]$$

Reconstruct one D in decay of interest for γ analysis (eg. K $\pi\pi$), & other in CP eigenstate (eg. KK, K_s π^0 ...) then CP of other is fixed.

Inkblot test

- Bondar and Poluektov show that the rectangular binning is far from optimal for both CLEOc and γ analyses
 - 16 uniform bins has only 60% of the B statistical sensitivity
 - c and s errors would be 3 times larger from the ψ''
- Best B-data sensitivity when cos(Δδ_D) and sin(Δδ_D) are as uniform as possible within a bin

Absolute value of strong phase diff. (BABAR model used in LHCb-48-2007)

Good approximation and the binning that yields smallest s and c errors is equal $\Delta \delta_{\rm D}$ bins-80% of the unbinned precision $2\pi (i-\frac{1}{2})/N < \Delta \delta_{\rm D} (m_+^2, m_-^2) < 2\pi (i+\frac{1}{2})/N$

Implementation at LHCb ($\gamma = 60^{\circ}, r_{B} = 0.1 \text{ and } \delta_{B} = 130^{\circ}$)

- Generate samples of $B^{\pm} \rightarrow D(K^{0}{}_{S}\pi\pi)K^{\pm}$ with a mean of 5000 events split between the charges
- Bin according to strong phase difference, $\Delta \delta_D \Rightarrow$
- Minimise χ^2

$$\chi^{2} = \sum_{i=-8(i\neq0)}^{8} \left[\frac{(n_{i}^{+} - N_{i}^{+}(x_{+}, y_{+}, h))^{2}}{n_{i}^{+}} + \frac{(n_{i}^{-} - N_{i}^{-}(x_{-}, y_{-}, h))}{n_{i}^{-}} \right]$$

$$n_{i}^{\pm} = \text{number of } B^{\pm} \to D(K_{S}^{0}\pi^{+}\pi^{-})K^{\pm} \text{ events in } i^{\text{th}} \text{ bin}$$

$$N_{i}^{\pm}(x_{\pm}, y_{\pm}, h) = h \left[K_{\pm i} + r_{B}^{2}K_{\mp i} + 2\sqrt{K_{i}K_{-i}} \left(c_{i}x_{\pm} \pm s_{i}y_{\pm} \right) \right]$$

$$h = \text{normalization factor}$$

$$K_{\pm i} = \int_{D} \left| f\left(m_{+}^{2}, m_{-}^{2} \right) \right|^{2} dD \text{ [measured from flavour tag data]}$$

K_i, c_i and s_i amplitudes calculated from model

In reality from flavour tagged samples and CLEO-c

No background with predicted 2 fb⁻¹ yield

Entries/2° Mean 60.49 Mean 7.771 Mean 0 04484 900E 500 RMS 7.854 RMS 1.268 RMS 1 048 350 800Ē 700 300 lona 250 500 200 400 150 300 100 200 100 100 60 70 50 80 -1 0 1 2 3 30 40 90 100 4 5 6 γ Pull γ(°) Pull $\sigma(\gamma)$ 7_2000[Entries/4×10⁻³ Mean 0.01272 Mean 0.1017 Mean 0.1431 400F 600 1800F RMS 0.0131 RMS 0 001684 RMS 1.023 350 1600 500 300 1400 1200 250 1000 200 800 150 600 100 400 50 200 -4 -3 -2 -1 0 1 2 3 4 5 6 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.005 0.01 0.015 0.02 Pull $\sigma(r_B)$ r_{R}

29

Model independent average uncertainty 7.7° (c.f. Mod el dependent 5.9°) 19th December 2007 RAL Seminar

5000 experiments

Input parameters $\gamma=60^{\circ}$, $r_{B}=0.1$ and $\delta_{B}=130^{\circ}$

γ uncertainties with 5000 toy experiments

Scenario	2 fb ⁻¹ Mod. Indep.	10 fb ⁻¹ Mod. Indep.	2 fb ⁻¹ Mod. Dep. (LHCb-048-2007)
No background	7.9 °	3.5 °	5.9°
Acceptance	8.1 °	3.5 °	5.5°
$D\pi$ (B/S = 0.24) (Best case scenario)	8.8 °	4.0 °	7.3 °
DK _{comb} (B/S=0.7) (Worst case scenario)	12.8 °	5.7 °	11.7 °

$B^{\pm} \rightarrow D(K^{0}_{S}\pi^{+}\pi^{-})K^{\pm}$ at LHCb

- Model independent fit with binning that yields smallest error from exploiting CLEO-c data
 - Binning depends on model only consequence of incorrect model is non-optimal binning and a loss of sensitivity

- Measurement has no troublesome and hard-to-quantify systematic and outperforms model-dependent approach with full LHCb dataset with currently assigned model error
 - 10 fb⁻¹ statistical uncertainty 4-6° depending on background
- CLEO-c measurements essential to validation of assumptions in model dependent measurement
- LHCb-2007-141 Available via CERN document server

19th December 2007

ADS method

 Look at DCS and CF decays of D to rates that have enhanced

$$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D}K^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma)$$

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma),$$

$$\Gamma(B^{+} \to (K^{+}\pi^{-})_{D}K^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma)$$

$$\Gamma(B^{+} \to (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)$$

$$\Gamma(B^{-} \to (h^{+}h^{-})_{D}K^{-}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma)$$

$$\Gamma(B^{+} \to (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma)$$

$$h = \pi \text{ or } K$$

- Unknowns : $r_B \sim 0.1$, δ_B , $\delta_D^{K\pi}$, γ , $N_{K\pi}$, N_{hh} ($r_D = 0.06$ well measured)
- With knowledge of the relevant efficiencies and BRs, the normalisation constants $(N_{K\pi}, N_{hh})$ can be related to one another
- Important constraint from CLEOc $\sigma(\cos \delta_D^{K\pi})=0.1-0.2$
- Overconstrained: 6 observables and 5 unknowns

19th December 2007

Expected yields

 ADS measurement is a counting experiment - but suppressed modes have ~10⁻⁷ BRs

- Principal challenge background suppression
- Detailed selections studies as for Dalitz analysis
 - LHCb-2006-066

Channel	Signal yield/2 fb ⁻¹	B/S	B-factory yields (~1/4 final data set)
$B^{\pm} {\longrightarrow} (K^{\pm} \pi_{\!_{\mp}})_D K^{\pm}$	56,000	0.6	4000
$B^\pm {\longrightarrow} {(h^- h^+)}_D K^\pm$	8200	1.8	500

 The suppressed modes have yields varying from 0 to 500 depending on the strong parameters
 – 780 background events predicted

Sensitivity from 2-body

 $\delta_{\rm D}$ = -25° – fit results from 1000 toy 2 fb⁻¹ experiments :

 $\begin{array}{l} \delta_{\text{D}} \ \ \text{constraint leads to} \\ \text{a 0.5-1.0}^\circ \ \ \text{reduction} \\ & \text{in } \sigma_{\gamma} \end{array}$

Also important for D mixing measurements

Four-body ADS

- $B \rightarrow D(K \pi \pi \pi)K$ can also be used for ADS style analysis
- Similar yields to 2-body slightly worse B/S
 - LHCb-2007-004
- However, need to account for the resonant substructure in $D \rightarrow K \pi \pi \pi$
 - made up of $D \rightarrow K^* \rho$, $K^- a_1(1260)^+$
 - in principle each point in the phase space has a different strong phase associated with it 3 and 4 body Dalitz plot analyses exploit this very fact to extract γ from amplitude fits
- Atwood and Soni (hep-ph/0304085) show how to modify the usual ADS equations for this case
 - Introduce **coherence parameter** $\mathbf{R}_{\mathbf{K}3\pi}$ which dilutes interference term sensitive to γ

$$\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}R_{K3\pi}\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)$$

•
$$R_{K3\pi}$$
 ranges from

- 1=coherent (dominated by a single mode) to
- 0=incoherent (several significant components)
- Can slice and dice phase space to find most coherent regions

19th December 2007

Determining the coherence factor

- Measurements of the rate of K3 π versus different tags at CLEO-c allows direct access to R_{K3 π} and $\delta_{K3\pi}$
- 1. Normalisation from CF $K^-\pi^+\pi^+\pi^-$ vs. $K^+\pi^-\pi^-\pi^+$ and $K^-\pi^+\pi^+\pi^-$ vs. $K^+\pi^-$
- 2. CP eigenstates:
- 3. $K^{-}\pi^{+}\pi^{+}\pi^{-}$ vs. $K^{-}\pi^{+}\pi^{+}\pi^{-}$: $\Gamma(K^{-}3\pi:K^{-}3\pi) = \Gamma_{K3\pi}^{CF}\Gamma_{K3\pi}^{DCS}\left[1-R_{K3\pi}^{2}\right]$
- 4. $K^{-}\pi^{+}\pi^{+}\pi^{-}$ vs. $K^{-}\pi^{+}$: $\Gamma(K^{-}3\pi:K^{-}\pi) \approx \Gamma_{K3\pi}^{CF}\Gamma_{K3\pi}^{DCS} \left[1 + \left(\frac{r_{D}^{K3\pi}}{r_{D}^{K\pi}}\right)^{2} + 2\frac{r_{D}^{K3\pi}}{r_{D}^{K\pi}}R_{K3\pi}\cos\delta_{D}^{K3\pi}\right]$

 $\Gamma(K3\pi:CP\pm) = \Gamma_{K3\pi}^{CF}\Gamma_{CP} \left| 1 + (r_D^{K3\pi})^2 \mp 2r_D^{K3\pi} R_{K3\pi} \cos \delta_D^{K3\pi} \right|$

$K3\pi$ tag side	Expected 800 pb ⁻¹ yield
K3π CF	3700
Κπ CF	5000
K3 π/Kπ DCS	0-40 per mode
$K^0_{S}\pi^0$	650
K+K-	500
$\pi^+\pi^-$	200

19th December 2007

Assume $\delta_{D}^{K\pi} \sim \pi$

Determining the coherence factor

- Analysis underway 10% effects in CP modes so great care with
 - Background subtraction
 - Efficiency calculation
- Estimate of current sensitivity with the addition of K⁰_Lπ⁰ and further CP tags i.e. K⁰_Sη to be added
- Further information in mixed CP SCS tags such as $K^0{}_S\pi^+\pi^-$

 $\sigma_{stat} \sim 0.1$ with 800 pb⁻¹

 Binned analysis to determine the most coherent regions

Conclusion-LHCb

• LHCb has estimated 2 fb⁻¹ sensitivity to γ in $B^{\pm} \rightarrow DK^{\pm}$ with

 $- D \rightarrow K^0_{\ S} \pi^+ \pi^- - \sigma_{\gamma} = 7-12^\circ$

 $- D \rightarrow K^{-}\pi^{+} \text{ and } D \rightarrow h^{+}h^{-} - \sigma_{\gamma} = 7.5 - 9.5^{\circ}$

 $- D \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$ will add additional information

Not the whole story with theoretically clean measurements:

 $- B^0 \rightarrow DK^* \sigma_{\gamma} \sim 9^\circ [LHCb-2007-050]$

 $- B_s \rightarrow D_s K \sigma_{\gamma+\phi s} \sim 10^\circ [LHCb-2007-041]$

A few degree precision on γ by the end of LHCb

19th December 2007

Conclusion CLEOc

- CLEO-c measurements essential to fulfilling this goal
- But there is much more that can be done
- Full amplitude analysis of 4-body should yield ultimate precision
 - Need DCS model, which can be accessed via CP tags at CLEOc
 - Also will guide division of phase space for binned coherence factor analysis
- Other modes that can be used:
 - $D \rightarrow K^- \pi^+ \pi^0$ (Coherence analysis underway)
 - $D \rightarrow K^0_{\ S} K^+ K^- \text{ and } D \rightarrow K^0_{\ S} K^+ \pi^-$
 - $D \rightarrow K^- K^+ \pi^+ \pi^-$ and $D \rightarrow K^0_{\ S} \pi^- \pi^+ \pi^0$

Additional slides

Aside: K-matrix

- Breit Wigner description of broad overlapping resonances violates unitarity and requires non-physical σ'
- K-matrix description preserves unitarity
- First studies (Lauren Martin/JL) of LHCb γ fit with one K-matrix parameterisation of the $\pi\pi$ S-wave
 - Difference between assuming Kmatrix and BW model consistent with B-factory observations
 - Draft available from CPWG webpage
- Explore different physical K-matrix parameterisation to evaluate systematic rather than introduce σ' will reduce model uncertainty

No background with predicted 2 fb⁻¹ yield

5000 experiments

Input parameters γ =60°, r_B=0.1 and δ _B=130°

The four Cartesian coordinates and normalization are free parameters

All pulls are normal therefore calculate γ , r_B and δ_B with propagated Cartesian uncertainties

19th December 2007

Toy experiment results: γ (2 fb⁻¹)

Scenario	Mean	RMS	Mean o	Mean pull	Pull RMS
No bck	60.5±0.1	7.9	7.8	0.045±0.015	1.05
Acc	60.7±0.1	8.1	7.8	0.075±0.015	1.07
Dπ	60.7±0.1	8.8	8.8	0.088±0.015	1.04
$D\pi + DK$ (B/S=0.7)	60.7±0.2	12.8	12.2	0.049±0.016	1.11
$D\pi + PS$ (B/S=0.7)	60.8±0.2	12.8	12.5	0.064±0.015	1.05
Dπ + DK+ PS (50:50) (B/S=0.7)	60.7±0.2	12.7	12.6	0.049±0.015	1.04

Toy experiment results: γ (10 fb⁻¹)

Scenario	Mean	RMS	Mean σ	Mean pull	Pull RMS
No bck	60.17±0.05	3.5	3.4	0.050±0.015	1.03
Acc	60.13±0.05	3.5	3.4	0.036±0.015	1.01
Dπ	60.22±0.06	4.0	3.9	0.054±0.015	1.03
$D\pi + DK$ (B/S=0.7)	60.18±0.08	5.7	5.7	0.030±0.015	1.01
$D\pi + PS$ (B/S=0.7)	60.26±0.08	5.5	5.5	0.045±0.015	1.00
Dπ + DK+ PS (50:50) (B/S=0.7)	60.22±0.08	5.4	5.6	0.038±0.015	0.97

Toy experiment results: r_B (2 fb⁻¹)

Scenario	Mean	RMS	Mean o	Mean pull	Pull RMS
No bck	0.1017±0.0002	0.013	0.013	0.143±0.015	1.02
Acc	0.1017±0.0002	0.014	0.013	0.175±0.016	1.13
Dπ	0.1015±0.0002	0.014	0.014	0.123±0.015	1.02
$D\pi + DK$ (B/S=0.7)	0.1031±0.0003	0.020	0.020	0.215±0.016	1.16
$D\pi + PS$ (B/S=0.7)	0.1035±0.0003	0.020	0.019	0.175±0.015	0.99
Dπ + DK+ PS (50:50) (B/S=0.7)	0.1038±0.0003	0.020	0.020	0.186±0.015	0.98

Toy experiment results: r_B (10 fb⁻¹)

Scenario	Mean	RMS	Mean o	Mean pull	Pull RMS
No bck	0.1003±0.0001	0.006	0.006	0.056±0.015	1.00
Acc	0.1003±0.0001	0.006	0.006	0.051±0.015	1.01
Dπ	0.1003±0.0001	0.006	0.006	0.049±0.015	0.98
$D\pi + DK$ (B/S=0.7)	0.1009±0.0001	0.009	0.009	0.101±0.015	0.97
$D\pi + PS$ (B/S=0.7)	0.1008±0.0001	0.009	0.009	0.093±0.015	0.99
Dπ + DK+ PS (50:50) (B/S=0.7)	0.1007±0.0001	0.009	0.009	0.077±0.015	0.98

Background

- 3 types of background to consider
 - $B \rightarrow D(K_S \pi \pi) \pi (B/S = 0.24)$
 - $r_B(D\pi)$ O(10⁻³) so Dalitz plots are like D^0 and D^0 for B^- and B^+ , respectively
 - Combinatoric (B/S<0.7)-mixtures of two types considered
 - 1. DK_{comb}: real $D \rightarrow D(K_S \pi \pi)$ combined with a bachelor K□Dalitz plot an even sum of D^0 and $\overline{D^0}$ decays
 - 2. PS_{comb} : combinatoric *D* with a bachelor *K* \Box Follows phase space
- Integrate background PDFs used in model-dependent analysis over each bin, then scaled to background level assumed:

$$N(D\pi)_{i}^{\pm} \propto \mathcal{E}_{\pm i} K_{\pm i}$$
$$N(DK_{comb})_{i}^{\pm} \propto \frac{1}{2} (\mathcal{E}_{\pm i} K_{\pm i} + \mathcal{E}_{\mp i} K_{\mp i})$$
$$N(PS_{comb})_{i}^{\pm} \propto P_{i}$$

fractional area of Dalitz space covered by bin

19th December 2007

Systematic related to acceptance

- The acceptance varies over the Dalitz plane
- The relative acceptance in each bin can be measured using the $B \rightarrow D\pi$ control sample with DK selection applied without bachelor K PID

$$\varepsilon_{i} = \frac{\int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} \varepsilon(m_{+}^{2}, m_{-}^{2}) dD}{K_{i}} \propto \frac{\mathrm{N}(\mathrm{B} \to \mathrm{D}(\mathrm{K}_{\mathrm{S}}^{0} \pi \pi) \pi)_{i}}{K_{i}}$$

- With the DC04 selection expect 60k events/2 fb⁻¹
 - Relative relative-efficiency uncertainty 1-4%/ $\Delta\delta_D$ bin with 2 fb⁻¹
 - Increased statistics reduces error
- Toy MC study smearing bin efficiencies in event generation by this amount leads to an additional 1° uncertainty without background and 3.2° uncertainty with DK_{comb} B/S=0.7

Small effect compared to statistical uncertainty

■ NB: the efficiency related to the PID of the bachelor π/K can be factored out and will be determined from the $D^* \rightarrow D(K\pi)\pi$ data to better than one percent-ignore at present

19th December 2007

Asymmetry in efficiency in Dalitz space

- Considered charge asymmetries in the efficiency across the Dalitz plane
 - $\epsilon(m_{+}^{2}, m_{-}^{2}) \neq \epsilon(m_{-}^{2}, m_{+}^{2})$
- Generated with the efficiency biased relative to one another depending on whether the event had m²₊>m²_Or m²₊<m²_
- Maximum bias on γ induced was <1° for 10% relative effect and full background
 10% effects would be evident in the Dπ sample

Resolution

- Δδ_D binning has some narrow regions in Dalitz space
- Investigation of how resolution on the Dalitz variables might affected the extraction of γ
- 10 MeV²/c⁴ resolution (DC04) on Dalitz variables and generated toy experiments with this smearing
- Found that this led to a few bins with largest (red) and smallest (dark blue) phase difference having a 2-3% relative changes in expected yields due to resolution induced migration
- Fit results on toy experiments where resolution included in generation but ignored in fit found no significant bias (<0.5°) on γ

Background fractions

- Combinatoric background rate will be determined from *B* and *D* mass sidebands which will cover at least 2-3 times the area of the signal region
 - Use 10× in DC04 background studies but this will probably be unrealistic with data
- If background distributions relatively flat in masses one can estimate that this leads to B/S will be determined absolutely to around 0.01 or better
 - Toy studies suggest that there is no impact on γ precision with this kind of uncertainty
- Maybe complications depending on Dalitz space distribution of the PS background but can only speculate until we have the data in hand

Background composition

- For favoured mode background dominated by $B \rightarrow D\pi$
 - 14 \times larger BF
 - Power of the RICH
- For suppressed combinatoric dominates (green)
- For $B \rightarrow D(hh)K$ more even mixture of comb. and $D\pi$
 - $B \rightarrow D(KK)K$ has significant nonresonant $B \rightarrow KKK$ component

