Extra Dimensions at the LHC

Giacomo Polesello

INFN, Sezione di Pavia

Introduction

Hierarchy problem: large separation between:

- weak interaction scale: W mass $\sim 100 \mathrm{GeV}$
- gravitation scale: Plank mass $M_{\mathrm{PI}} \equiv\left(G_{F}\right)^{-1 / 2} \sim 10^{19} \mathrm{GeV}$

Possible approach: exploit geometry of space-time:
Postulate that we live in 3-d "brane" embedded in higher dimensional space Hierarchy is generated by geometry of extra dimensions (ED)

Possibility that matter and non-gravitational forces confined on 3-brane and gravity propagates through higher dimensional volume ("bulk")
Since we do not observe deviation from Newton's force at a distance $\lesssim \mathrm{mm}$ extra-dimensions must be compactified with radius $R \lesssim \mathrm{~mm}$

Number of perceived dimensions depends on whether observer can resolve compactification radius R

Two ways of establishing hierarchy through extra-dimension:

- Arkhani Ahmed, Dimopoulos, Dvali (ADD):

Trough "Large" flat extra-dimensions, compactified on torus.

- Gravitational strength diluted by volume of n extra dimensions: $M_{\mathrm{PI}}^{2}=M_{D}^{n+2} R^{n}$ with M_{D} scale of gravity in the bulk
- To account for hierarchy: $M_{D} \sim 1 \mathrm{TeV} \Rightarrow R \gg 1 / \mathrm{TeV}$ "Large" ED
- EW measurements test SM gauge fields to distances $\sim 1 / \mathrm{TeV}$
\Rightarrow SM fields localized on a brane
- Randall Sundrum (RS):

Through a curved geometry of the extra-dimension

- Only one extra dimension
- hierarchy from exponential warp factor in non factorizable geometry: $\Lambda_{\pi}=M_{P} e^{-k \pi r_{c}}$

In both cases, the presence of compactified dimensions gives rise to a Kaluza-Klein tower of excited states for the gravitons: Many striking signatures predicted at Colliders by these models ED theories have emerged after design of detectors completed \Rightarrow ideal way of verifying robustness of detector for unforeseen signatures

ADD: Lowering the scale of gravity

Consider single ED, compactified with X periodicity R

Space variables are x, y, z and w.
For a field ϕ propagating in ED,
$\phi(w)=\phi(w+R)$
A point mass at $w=0$ will appear as a
sequence of masses with spacing R along w

Calculate the gravitational force F felt by a unit mass at a distance r from the origin Use of Gauss' law in n dimensions which can be written as:

$$
\int F d a=S_{n} G_{n} M_{e n c}
$$

Where S_{n} is the surface area of a unit n-sphere, $M_{\text {enc }}$ is the mass enclosed in the Gaussian volume and G_{n} is the n-dimensional Newton's constant

Surface area of unit sphere:
Γ is gamma function:

$$
\begin{array}{ll}
S_{n}=\frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} & \Gamma(n-1)=(n-1) \Gamma(n-1) \\
S_{3}=4 \pi \quad S_{4}=2 \pi^{2} & \Gamma(1)=1 \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{array}
$$

$$
\int F d a=S_{n} G_{n} M_{e n c}
$$

Case 1: $r \ll R \Rightarrow$ only the mass at $W=0$ contributes to the field Using the fact that $F \equiv F(r)$, and $s d a=r^{n-1} S_{n}$

$$
3 \text { dimensions: } \int d a=4 \pi r^{2} \Rightarrow F=G_{3} \frac{M}{r^{2}}
$$

\Rightarrow Recover Newton's law

$$
4 \text { dimensions: } \int d a=2 \pi^{2} r^{2} \rightarrow F=G_{4} \frac{M}{r^{3}}
$$

The form of Newton's law is modified at short distances
Short-distance experiments can in principle verify this

Case 2: $r \gg R$: mass source appears as a wire with uniform mass density M / R
Cylindrical geometry, for calculating field at distance r from the wire consider a 4-d cylinder with side length L and end caps composed of $3-\mathrm{d}$ spheres of radius r.

In 4-d: $\int d a=4 \pi r^{2} L, S_{4}=2 \pi^{2}, M_{\text {enc }}=M(L / R)$. Substituting into Gauss theorem:

$$
F 4 \pi r^{2} L=2 \pi^{2} G_{4} M \frac{L}{R} \Rightarrow F=G_{4} M \frac{2 \pi^{2}}{4 \pi} \frac{1}{r^{2} R}
$$

At large distances we recover the $1 / r^{2}$ dependence.
Generalising to n space dimensions:

$$
\int d a=4 \pi r^{2} L^{n-3} \quad M_{e n c}=M(L / R)^{(n-3)} \Rightarrow F=\frac{S_{n}}{4 \pi} \frac{G_{n}}{R^{n-3}} \frac{M}{r^{2}}
$$

Identifying the n-dimensional formula to Newton's law with $G_{N} \equiv G_{3}$:

$$
\frac{S_{n}}{4 \pi} \frac{G_{n}}{R^{n-3}} \frac{M}{r^{2}}=G_{N} \frac{M}{r^{2}} \Rightarrow G_{N}=\frac{S_{n}}{4 \pi} \frac{G_{n}}{V_{n-3}}
$$

Where $V_{(n-3)}=R^{n-3}$ is the volume of the $(n-3)$-dimensional compactified space The strength of the gravitational interaction as felt at long distance $\left(G_{N}\right)$ is equal to the strength in n dimension diluted by the extra dimension volume

Define $\delta \equiv n-3$ of previous derivation, number of extra-dimensions
Define the characteristic mass scales: $M_{\mathrm{PI}}=\left(G_{N}\right)^{-1 / 2} \sim 10^{19} \mathrm{GeV}$ and

$$
\hat{M}_{D}^{\delta+2}=\frac{G_{\delta}^{-1}}{S_{3+\delta}}
$$

We obtain the reduction formula:

$$
M_{\mathrm{PI}}^{2}=8 \pi R^{\delta} M_{D}^{2+\delta}
$$

Assume now $M_{D} \sim 1 \mathrm{TeV}$: solve hierarchy problem
$R \sim 10^{32 / \delta+3} \mathrm{Gev}^{-1} \Rightarrow R \sim 10^{32 / \delta-16} \mathrm{~mm}$
$\delta=1$ corresponds to astronomical distances: excluded
$\delta=2$ at the limit of present tests of Newton's law

δ	$\mathrm{R}(\mathrm{mm})$
1	10^{16}
2	1
3	5×10^{-6}
4	10^{-8}
5	10^{-10}

Experimental tests of Newton's law

Cavendish-type experiments using torsion pendulum

Parametrize the deviation from Newton's 10^{6} potential with an exponential law

$$
V(r)=-\frac{1}{M_{\mathrm{PI}}^{2}} \frac{m_{1} m_{2}}{r}\left(1+\alpha e^{-r / \lambda}\right) .
$$

For ED compactified on torus:

$$
V(r)=-\sim \frac{G_{N} M}{r}\left(1+2 n e^{-r / R_{c}}\right)
$$

$\alpha=4$ for 2 ED on torus $\Rightarrow R_{c}<0.19 \mathrm{~mm}$

Kaluza-Klein towers

Features of compactified extra-dimensions, due to periodicity condition of fields in
extra dimension: $\phi(y+2 n \pi R)=\phi(y)$ where y is extra dimension
Spacing of Kaluza-Klein states can be understood with heuristic considerations
Standing waves in box:

- Wavelengths λ such as the size $L \equiv 2 \pi R$ of the box is a multiple of λ
- The wave number k satisfies $k \equiv 2 \pi / \lambda=n / R$ with n integer
- Energy is quantized $E=h k$

Compact dimensions can be assimilated to a finite box.

- Expect in compactified dimension particles with mass spectrum characteristic of standing waves, i.e. quantized in units of $1 / R$

These oscillations are called Kaluza-Klein modes

Case of a single ED

Standard relativistic formula $E^{2}=\mathbf{p}^{2}+m_{0}^{2}$ reads:

$$
E^{2}=\mathbf{p}^{2}+p_{5}^{2}+m_{0}^{2}
$$

Where p_{5} is momentum in fifth dimension, quantised as $p_{5}=h k_{5}=n h / R$
Thus in center of mass $(\mathbf{p}=0)$ one obtains the following energy spectrum:

$$
E^{2}=\left[m_{0}^{2}+\frac{n^{2} h^{2}}{R^{2}}\right]
$$

A 5-dimensions field is identified in 4 dimensions to a tower of particles regularly spaced in mass squared, the gap being the inverse of the compact dimension size \Rightarrow For each field propagating in the bulk, with mass m_{0}, if $m_{0} \ll 1 / R$ in the theory will appear an infinite sequence of states with masses $1 / R, 2 / R, 3 / R \ldots \ldots$

Study whether, for the different implementations of the model these KK states can be detected at the LHC

ADD phenomenology

Two parameters defining the model: number of ED δ, compactification scale M_{D}
ED compactified with radius R_{c} connected to δ and M_{D} by reduction formula

$$
M_{\mathrm{PI}}^{2}=8 \pi R_{c}^{\delta} M_{D}^{2+\delta}
$$

For $M_{D} \sim \mathrm{TeV}$, Extra Dimensions "Large" $\mathrm{mm} \lesssim R_{c} \lesssim \mathrm{fm}$ for δ from 2 to 6
EW+strong forces tested down to $10^{-15} \mathrm{~mm}$: SM fields confined on a 3 -brane \Rightarrow only gravity probes existence of Extra Dimensions

Gravity propagates in bulk: $K K$ tower of spin-2 graviton fields

- Equally spaced masses with $m_{\vec{n}}=\sqrt{\vec{n}^{2} / R_{c}^{2}}$, where $\vec{n}=\left(n_{1}, n_{2}, \ldots n_{\delta}\right)$ labels the KK excitation level
- Coupling to the Standard Model with universal strength $M_{P I}^{-1}$

Two classes of possible collider signatures: real emission of $K K$ gravitons, virtual graviton exchange

Direct graviton production

Graviton coupling strength $\sim 1 / M_{p}^{2}$, but large number of accessible KK modes
Spacing of modes $1 / R_{c}$, for $\delta=2, M_{D}=1 \mathrm{TeV}, \Delta m_{K K} \ll \mathrm{eV}$
In collider process with energy $E,\left(E R_{c}\right)^{\delta}$ massive KK modes accessible: For $\delta=2$
and $E=1 \mathrm{TeV}$ have 10^{30} modes
Using the reduction formula, sum over all modes exactly cancels $\sim 1 / M_{p} l$ dependence

$$
\sigma_{K K} \sim \frac{1}{M_{\mathrm{PI}}^{2}}\left(\sqrt{s} R_{c}\right)^{\delta} \sim \frac{1}{M_{D}^{2}}\left(\frac{\sqrt{s}}{M_{D}}\right)^{\delta} .
$$

\Rightarrow Sizable cross-section for processes:

Direct graviton production analysis (ATLAS)

Directly produced $G^{(k)}$ interacts weakly with ordinary matter and goes undetected
Signature is large \mathbb{E}_{T} from undetected graviton + a high P_{T} jet or photon Single jet analysis requiring:

- $E_{T}^{j e t}>1 \mathrm{TeV},\left|\eta_{j e t}\right|<2.5$
- Veto leptons
- Veto $\tau \rightarrow$ hadrons

Signal emerges from background at high \mathbb{E}_{T}

Dominant SM contribution is
$Z \rightarrow \nu \nu+1$ jet

Apply standard cut at $\not_{T}>1 \mathrm{TeV}$ to evaluate discovery potential
Effective low-energy theory: valid up to M_{D}. Truncate cross-section when $\hat{s}>M_{D}^{2}$

Sensitivity evaluation

Significance for $j G$ production as a function of $E_{T}^{j e t}$ cut
$S_{\text {max }}=S / \sqrt{B}$
$S_{\text {min }}=S / \sqrt{\alpha B}$ with $\alpha \sim 7$, accounts for the fact that the background calibration sample $Z \rightarrow \ell \ell$ is smaller than the dominant $Z \rightarrow \nu \nu$ background.

Reach in $M_{D}: S_{\max }>5, \quad \geq 100$ signal events, $\quad E_{T}^{j e t}>1 \mathrm{TeV}$

δ	$M_{D}^{\max }(\mathrm{TeV})$	$M_{D}^{\max }(\mathrm{TeV})$	$M_{d}^{\min }(\mathrm{TeV})$
	$100 \mathrm{fb}^{-1}$	$100 \mathrm{fb}^{-1}$	
2	7.7	9.1	~ 4
3	6.2	7.0	~ 4.5
4	5.2	6.0	~ 5

$M_{d}^{\text {min }}$ is M_{d} below which analysis results not reliable, because high-scale physics affects results

Virtual graviton exchange

Exchange of a virtual gravitons alters the cross section for particle pair production

Most promising channels $p p \rightarrow G^{*} \rightarrow \ell^{+} \ell^{-}, p p \rightarrow G^{*} \rightarrow \gamma \gamma$
Interference with SM: effect parametrized in terms of $\eta=\frac{F}{M_{s}^{4}}$

$$
\frac{d \sigma_{\eta}}{d M d \cos \theta^{*}}=\frac{d \sigma_{S M}}{d M d \cos \theta^{*}}+\eta f_{i n t}(M, \cos \theta)+\eta^{2} f_{K K}\left(M, \cos \theta^{*}\right)
$$

Sum over graviton states divergent, assume cut-off at M_{s}.
Explicit form of F depends on (unknown) quantum gravity theory, perturbative approach no more valid when $\hat{s} \sim M_{s}^{2}$

Gluon-gluon initial state contributes to $f_{K K}$ for leptons

In convention where $F=1$, independent from number of extra-dimensions:
Study invariant mass spectrum for both $\ell \ell$ and $\gamma \gamma, M_{\gamma \gamma, \ell \ell}<0.9 M_{S}$ (regularization)

Establish minimal cut on $M_{\gamma \gamma, \ell \ell}$ to optimize sensitivity
For 10 (100) fb ${ }^{-1}$:
$M_{s}>5.1(6.7) \mathrm{TeV}(\gamma \gamma) \quad M_{s}>5.4(7.0) \mathrm{TeV}(\ell \ell) \quad M_{s}>5.7(7.4) \mathrm{TeV}$ (combined)
Reach depends crucially on systematic control of $m_{\gamma \gamma}$ and $m_{\ell \ell}$ at high masses

TeV^{-1} Extra Dimensions

Standard ADD model:
EW precision measurement test SM gauge fields to distances $\sim 1 / \mathrm{TeV} \Rightarrow \mathrm{SM}$ fields can not propagate in "Large" ED and are localized on a brane

Variation on the model: "asymmetric" models where different ED have different compactification radii. Two types of ED:

- "large" ED where only gravity propagates
- "small" ($R \sim 1 / \mathrm{TeV}$) extra dimensions where both gravity and SM fields propagate

This scheme could be pictured as a "thick" brane in side wihci SM fields propagate, immersed in the usual "large" ADD bulk

Various models, depending on which SM fields propagate in the bulk:

- Only gauge fields: describe it today
- Both fermion and gauge fields (UED)

General signature for models with compactified ED: regularly spaced Kaluza Klein excitations of fields propagating in the bulk

KK mass spectra and couplings given by compactification scheme and number of ED In case of one "small" ED with radius $R_{c} \equiv 1 / M_{c}$:

- Excitations equally spaced with masses:

$$
M_{n}^{2}=M_{0}^{2}+n^{2} M_{c}^{2}
$$

- Couplings equal to $\sqrt{2} \times$ gauge couplings

Minimum excitation mass compatible with EW precision measurement: 4 TeV
Consider excitations for all SM bosons:

- Z / γ, discovery channel: decay into $\ell^{+} \ell^{-}$
- W, discovery channel: decay into $\ell \nu$
- gluon, width $\sim 2 \alpha_{s} M\left(g^{(n)}\right)$, difficult to observe above QCD background

Minimum excitation mass considered: 4 TeV : natural width
$\sim 2 \times \Gamma(W) \times\left(M_{c} / 100\right) \mathrm{GeV} \sim 200 \mathrm{GeV}$

Natural width dominates for $e^{+} e^{-}$. Detailed knowledge of electron resolution not needed as long as $\sigma(E) / E$ better better than 2-3\%.

Experimental width dominates for $\mu^{+} \mu^{-} \Rightarrow$ use muons only for discovery, not for measurements

Data analysis: Z / γ

Resonance includes excitation of both γ and Z, two resonances can not be resolved
Evaluate number of events in peak as a function of mass of first excitation $\left(M_{k k}\right)$
Require: $S / \sqrt{B}>5$ and >10 events in peak, summed over two lepton flavours
Reach for $100 \mathrm{fb}^{-1}: \sim 5.8 \mathrm{TeV}$
In no case second KK peak observable

Data analysis: W

Analysis requirements:

- One lepton with $P_{t}>200 \mathrm{GeV}$ in $|\eta|<2.5$
- $\mathbb{E}_{T}>200 \mathrm{GeV}$
- $\left.m_{T}(\ell \nu)\right)>1 \mathrm{TeV}$

Where $m_{T}=\sqrt{2 p_{T}^{\ell} p_{T}^{\nu}(1-\cos \Delta \phi)}$
If no new physics 500 events from off-shell SM $W\left(100 \mathrm{fb}^{-1}\right)$

Reducible backgrounds considered: $\bar{t} t, W W, Z Z$
For $m_{T}(\ell \nu)>1 \mathrm{TeV} \sim 75$ background events, dominated by $W W$ and $W Z$
With moderate jet veto at 100 GeV , background reduced to ~ 20 events, but bias for study of Jacobian shape

Reach for $100 \mathrm{fb}^{-1}: \sim 5.8 \mathrm{TeV}$

Even if no events in peak, can observe depletion in invariant (transverse) mass distribution off-peak

Count events with respectively: $1000<M_{\ell \ell}<2500 \mathrm{GeV}(Z / \gamma)$
$1000<M_{T}<2500 \mathrm{GeV}(W)$
Require: $\left(N\left(M_{c}\right)-N(S M)\right) / \sqrt{N(S M)}>5$ (two lepton flavours)
Reach for $100 \mathrm{fb}^{-1}: \sim 8 \mathrm{TeV}$ for $Z / \gamma, \sim 9 \mathrm{TeV}$ for W
Deviation from SM at sensitivity limit: $\sim 15 \% \Rightarrow$ need systematic control on DY

If $Z^{(1)} / \gamma^{(1)}$ observed, study distribution of polar angle $\cos \theta^{*}$ for $M\left(Z^{(1)}\right)=4 \mathrm{TeV}$ and different models:

- Alternative $Z^{(1)}$ model
- Z^{\prime} model with Standard Model couplings
- Graviton exchange with $G^{*} \rightarrow e^{+} e^{-}$

Trough Kolmogorov test study discrimination power:
Reject Z^{\prime} hypothesis at $95 \% \mathrm{CL}$ in 52% of cases
Reject $G^{*} \rightarrow e^{+} e^{-}$hypothesis at $95 \% \mathrm{CL}$ in 94% of cases

$\boldsymbol{\operatorname { c o s }}\left(\theta^{*}\right)$

品

KK excitations of the gluon

Require no third jet with P_{T} above 100 GeV

Large deviation from SM QCD spectrum, but

Need to understand how well we know jet p_{T} spectrum:

- PDF uncertainites
- NLO corrections
- Detector linearity at high $p_{T} \ldots .$.

Also need to study if peak from s-channel g^{*} exchange can be seen above smooth
SM+KK background
Difficult due to large width of resonances and complex multi-resonance pattern

Randall-Sundrum model

One additional dimension in which gravity propagates
ED compactified on S^{1} / Z_{2} (circle folded on itself \equiv orbifold)

Two branes at extremal values of compactification:

- Planck brane: $\mathrm{y}=0$, where gravity localized
- Tev-brane where SM fields (us) constrained

Metric for this scenario is non-factorizable:

$$
\begin{equation*}
d s^{2}=e^{-2 k y} \eta_{\mu \nu} d x^{\mu} d x^{\nu}-d y^{2}, \tag{1}
\end{equation*}
$$

Exponential term: "warp factor". Parameter k of order Planck scale governs curvature of space
Consistency of low energy theory: $k / M_{\mathrm{PI}} \lesssim 0.1$ with $\bar{M}_{\mathrm{PI}}=M_{\mathrm{PI}} / \sqrt{8 \pi}=2.4 \times 10^{18}$ being the reduced 4-d Planck scale.

Write action for gravitational field in 4-d effective theory (like it was done for ADD), obtain form for 5-dim fundamental scale \bar{M}_{5}

$$
\begin{equation*}
M_{\mathrm{PI}}^{2}=\frac{\bar{M}_{5}^{3}}{k} \tag{2}
\end{equation*}
$$

Scale of all physical processes on the TeV brane described by:

$$
\Lambda_{\pi} \equiv \bar{M}_{\mathrm{Pl} e^{-k R_{c} \pi}}
$$

$\Lambda_{\pi} \sim 1 \mathrm{TeV}$ provided thar $k R=10$.
Two parameters define the model:

- Λ_{π}
- ratio $k / M_{P l}$

If require $\Lambda_{\pi}<10 \mathrm{TeV}$ (hierarchy) closed region in parameter space $\left(m_{1}=3.83 \frac{k}{M_{P l}} \Lambda_{\pi}\right)$

Randall-Sundrum: Narrow graviton states

Masses of KK graviton obtained from Bessel expansion, replacing Fourier expansion of flat geometry

Mass m_{n} of excitation $G^{(n)}$ at:

$$
m_{n}=x_{n} k e^{-k \pi r_{c}}=x_{n} \frac{k}{M_{P l}} \Lambda_{\pi}
$$

where x_{n} are the roots of the first order Bessel function. $x_{1}=3.83 \Rightarrow \sim T e V$ scale for mass of first excitation

Couplings of $G^{(n)}$ to SM fields $\sim 1 / \Lambda_{\pi} \Rightarrow$

- sizable cross-section at the LHC
- Narrow resonances

Coupling driven by factor $c=k / M_{P l}$

$$
G(1) \rightarrow e^{+} e^{-} \text {in CMS (full simulation) }
$$

Graviton couples to all SM particles

Most favourable channel $G(1) \rightarrow e^{+} e^{-}$:

- Optimal experimental resolution
- Minimal background

Study achievable significance as a function of mass of first excited state

Use $c=0.1$ and $c=0.01$ for couplings

Coverage of parameter space
With one year at the LHC (high lumi) full coverage of parameter space

Spin determination of graviton resonance

Graviton is spin-2 particle. Angular distribution of decay products depends on production mechanism, and on spin and mass of decay products

β is v / c of decay products
Gluon fusion dominates, contribution from $\bar{q} q$ flattens distribution

Polar angle distribution of $e^{+} e^{-}$after the acceptance cuts are applied

For $m_{1}=1500 \mathrm{GeV}$ and $100 \mathrm{fb}^{-1}$ can distinguish from spin 1 case

Test spin hypotheses with a likelihood technique

Spin-1 hypothesis can be ruled out at $90 \% \mathrm{CL}$ up to $m_{1}=1720 \mathrm{GeV}$

Black Holes

Geometrical semi-classical reasoning:
Possibility of black hole formation when two colliding partons have impact parameter smaller than the radius of a black hole

Consider two colliding partons with CMS energy $\sqrt{\hat{s}}=M_{\mathrm{BH}}$
Dimensional analysis: partonic X -section for formation of black hole of mass $M_{B H}$ is

$$
\sigma\left(\hat{s}=M_{B H}^{2}\right) \sim \pi R_{s}^{2}
$$

Where R_{S} is Schwarzchild radius of black hole

$$
R_{S} \sim \frac{1}{\sqrt{\pi} M_{P}}\left[\frac{M_{\mathrm{BH}}}{M_{P}}\right]^{\frac{1}{n+1}}
$$

In extra-dimension theories $M_{P} \sim \mathrm{Tev} \Rightarrow$, for $M_{\mathrm{BH}} \sim M_{P}, \sigma \sim(\mathrm{TeV})^{-2} \sim 400 \mathrm{pb}$
Potentially large production cross-section
Theoretical debate on geometrical formation factors. Possible big suppression

Black Hole production

Convolve the parton-level cross-section with parton distribution functions
For $n>2$ dimensions little dependence on n because of assumed form of formation factor in CHARYBDIS generator (Cambridge group)

At high luminosity, > 1 black hole per second with $M_{B} H>5 \mathrm{TeV}$

Black Hole decay

Decay through Hawking radiation

Details of decay extremely model-dependent.

Simplifying assumptions: all partonic energy goes into BH formation, all Hawking radiation through SM Particles on the brane

Thermal radiation: black body energy spectrum

$$
\begin{equation*}
\frac{d N}{d E} \propto \frac{\gamma E^{2}}{\left(e^{E / T_{H}} \pm 1\right)} T_{H}^{n+6} \tag{3}
\end{equation*}
$$

\pm applies to fermions and bosons, T_{H} is the Hawking temperature

$$
\begin{equation*}
T_{\mathrm{H}}=\frac{n+1}{4 \pi r_{\mathrm{s}}} \propto M_{\text {вн }}^{-\frac{1}{n+1}} \tag{4}
\end{equation*}
$$

γ is a $(4+n)$-dimensional grey-body factor: absorption factor from propagation in curved space

Event characteristics of BH decays

- From integrating flux: large multiplicities of particles in final state
- Hawking decay isotropic: spherical events (more spherical than SUSY)
- High mass: High Σp_{T} of final state particles

No significant SM background!

Democratic decay of BH into all types of SM particles
Large number of events containing a high- P_{T} neutrino
\mathbb{E}_{T} distribution even in excess of SUSY

Particle type	Particle emissivity (\%)
Quarks	61.8
Gluons	12.2
Charged leptons	10.3
Neutrinos	5.2
Photon	1.5
Z 0	2.6
W $^{+}$and W^{-}	5.3
Higgs boson	1.1

Also large production of gauge bosons and higgses, BH decay even be privileged production mode for higgs boson

Black hole mass measurement

Simply sum the 4-momentum of all reconstructed particles in the event
Test procedure on two BH mass ranges around 5 and 8 TeV for n between 2 and 6

Require at least 4 jets with respectively $P T>500,400,300 \mathrm{GeV}$

To improve mass reconstruction, reject events with $\mathbb{E}_{T}>100 \mathrm{GeV}$
Efficiency between 15 and 30% depending on mass and n

Achieve mass resolution of 3-5\%
$m_{B H}$ correlated to T_{H}, but large theoretical uncertainties
Useful benchmark process for study of high multiplicities and energies in the detector
Vigorous full simultion effort ongoing in ATLAS to verify these results

Conclusions

Extra Dimension theories offer an attractive way of solving the hierarchy problem basedon the space-time geometry of space

The presence of fields propagating in the extra-dimensions produces Kaluza Klein towers of particles

The mass scale of the lowest lying of the KK towers is typically approximately in th range of LHC

The details of the KK fields depend on the specific model implementation. For the main models available, detailed studies performed to test the LHC potential In general the LHC will be sensitive to the nex phenomenologies arising from ED theories for scales up to a few TeV

