Family symmetries and fermion masses/mixings

Ivo de Medeiros Varzielas

Rudolph Peierls Centre for Theoretical Physics University of Oxford

2007/04/11

★ E → < E →</p>

Outline

Introduction

- The data
- Family symmetries

2 $\Delta(27)$ model

- Overview
- Mass terms
- HPS tri-bi-maximal mixing
- Vacuum alignment

3 Conclusion

Mixing angles predicted

∃ > < ∃ >

The data Family symmetries

Standard model: Yukawa couplings

Yukawa Lagrangian

$$\mathsf{L}_{\mathsf{Y}\!\mathsf{u}\mathsf{k}\mathsf{a}\mathsf{w}\mathsf{a}} = \mathsf{Y}^{\mathsf{u}}_{ij}\mathsf{Q}^{i}\mathsf{u}^{\mathsf{c},j}\mathsf{H} + \mathsf{Y}^{\mathsf{u}}_{ij}\mathsf{Q}^{i}\mathsf{u}^{\mathsf{c},j}ar{\mathsf{H}}$$

Mass matrices

$$M^{u}_{ij} = Y^{u}_{ij} \langle H^{0} \rangle$$

$$M^d_{ij}=\,Y^d_{ij}\langlear{H}^0
angle$$

3

Introduction Conclusion

The data

Summary of data: masses

xford hysics

3

The data Family symmetries

Summary of data: quark mixing

Wolfenstein parameterization

$$V_{CKM} \sim \left(egin{array}{ccc} 1 & \lambda & \lambda^3 \ -\lambda & 1 & \lambda^2 \ \lambda^3 & -\lambda^2 & 1 \end{array}
ight)$$

 $\lambda \approx 0.23$

The data Family symmetries

Summary of data: lepton mixing

The data Family symmetries

GUT scale texture fits: Quarks

Symmetric fits

$$Y^{u} \sim \begin{pmatrix} 0 & i \epsilon_{u}^{3} & \epsilon_{u}^{3} \\ \cdot & \epsilon_{u}^{2} & \epsilon_{u}^{2} \\ \cdot & \cdot & 1 \end{pmatrix}$$
$$Y^{d} \sim \begin{pmatrix} 0 & 1.7\epsilon_{d}^{3} & (0.8)e^{-i(45)^{o}}\epsilon_{d}^{3} \\ \cdot & \epsilon_{d}^{2} & (2.1)\epsilon_{d}^{2} \\ \cdot & \cdot & 1 \end{pmatrix}$$
$$\epsilon_{d} \sim 0.13 \quad \epsilon_{u} \sim 0.048$$

Paper out soon (today?)

₹ 9Q@

The data Family symmetries

GUT scale texture fits: Charged leptons

Georgi-Jarlskog relations

To good approximation:

•
$$\frac{m_b}{m_\tau}(M_X) = 1$$

• 11 texture zero $\rightarrow \frac{det(M^q)}{det(M')}(M_X) = 1$

Hints of GUT? But:

•
$$\frac{m_s}{m_\mu}(M_X) = \frac{1}{3}$$

э.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The data Family symmetries

Neutrinos?

Seesaw mechanism

$$m_{\nu} = \left(M_{D}^{\nu}\right) \left(M_{RR}\right)^{-1} \left(M_{D}^{\nu}\right)^{T}$$

イロト イポト イヨト イヨト

₹ 9Q@

The data Family symmetries

Seesaw mechanism: masses

Seesaw formula

$$m_{\nu} = (M_D^{\nu}) (M_{RR})^{-1} (M_D^{\nu})^T$$

1 generation example

$$M^{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D & m_{RR} \end{array}\right)$$

if det $(M^{\nu}) = -m_D^2$; tr $(M^{\nu}) = m_{RR} \gg m_D$:

$$M^
u \sim \left(egin{array}{cc} -m_D^2/M_{RR} & 0 \ 0 & M_{RR} \end{array}
ight)$$

ヘロト 人間 とくほとくほとう

ford: Invsics

₹ 9Q@

The data Family symmetries

Seesaw mechanism: mixing

2 generation SD example

$$m_{\nu} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}^{-1} \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}^{T}$$
$$= 1/M_1 \begin{pmatrix} a_1^2 & a_1 a_2 \\ a_2 a_1 & a_2^2 \end{pmatrix} + 1/M_2 \begin{pmatrix} b_1^2 & b_1 b_2 \\ b_2 b_1 & b_2^2 \end{pmatrix}$$

if $M_1 \ll M_2$:

- heaviest eigenstate $\sim (a_1, a_2)$ (mass $\propto 1/M_1$)
- lightest eigenstate $\sim (b_1, b_2)$ mass $\propto 1/M_2$)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

xford

The data Family symmetries

Broken family symmetry

Messengers

- Hierarchical structure suggests broken symmetry ($\langle \theta \rangle \neq 0$)
- Suppresions can arise through messengers (Ψ_X)

ヘロト ヘアト ヘヨト ヘヨト

The data Family symmetries

Abelian?

Simple U(1) example				
	Field	<i>U</i> (1)		
	Н	0		
	θ	-1		
	d ₃	0		
	d_3^c	0		
	d_2	1		
	d_2^c	1		
	<i>d</i> ₁	2		
	<i>d</i> ^c ₁	2		

Respective mass matrix

$$M^{d} = m_{b} \begin{pmatrix} \epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \end{pmatrix}$$
$$\frac{\langle \theta \rangle}{M_{X}} = \epsilon$$

ヘロン 人間 とくほとく ほとう

₹ 9Q@

The data Family symmetries

Non-Abelian?

Reasons

- SM: F.S. ⊂ U(3)⁶; SO(10): F.S. ⊂ U(3)
- Specific features (e.g. $M_{23}^d \sim \epsilon^2$) easier to explain
- Lepton (near) HPS mixing strongly suggests non-Abelian

ヘロト ヘアト ヘヨト ヘヨト

The data Family symmetries

$SO(10) \times SU(3)?$

3

★ E > ★ E >

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Objectives

Model features

- Straightforward to embed into GUT / String unification
- Explains observed fermion data (3 generations etc.)
- Explains near HPS lepton mixing

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

GUT

Pati-Salam

• $SO(10) \rightarrow SU(4) \times SU(2)_L \times SU(2)_R$

GUT leaves some hints

•
$$SU(4): q \leftrightarrow I: M^d \leftrightarrow M^e \ (\epsilon_d \leftrightarrow \epsilon_e); M^u \leftrightarrow M_D^{\nu}$$

•
$$SU(2)_R: M^d \leftrightarrow M^u \ (\epsilon_d \leftrightarrow \epsilon_u); M^e \leftrightarrow M_D^{\nu}$$

 $SU(2)_R$ breaking associated with $\epsilon_d > \epsilon_u$

₹ 9Q@

イロト 不得 とくほ とくほとう

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Family assignments

$ar{\phi}$ and ψ

- The fermions ψ_i , ψ_i^c are triplets of the family symmetry
- The flavons $\bar{\phi}_{A}^{i}$ are anti-triplets
- Invariant mass terms: $\bar{\phi}^{i}_{A}\psi_{i}\bar{\phi}^{j}_{B}\psi^{c}_{i}H$

Desired vevs

 $egin{aligned} &\langlear{\phi}_3
angle \propto (0,0,1) \ &\langlear{\phi}_{23}
angle \propto (0,1,-1) \ &\langlear{\phi}_{123}
angle \propto (1,1,1) \end{aligned}$

ford sics

ヘロト ヘ回ト ヘヨト ヘヨト

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Georgi-Jarlskog field

H_{45}

 H_{45} (a 45 of SO(10)) acquiring a vev:

$$\langle \mathcal{H}_{45}
angle \propto Y = \mathcal{T}_{3_{\mathcal{R}}} + (\mathcal{B} - \mathcal{L})/2$$

$$Y^{d_R} = -1/2 + 1/6 = -1/3$$

 $Y^{e_R} = -1/2 - 1/2 = -1$
 $Y^{\nu_R} = 1/2 - 1/2 = 0$
 H_{45} coupling to second generation $\rightarrow m_s/m_\mu = 1/3$

= 900

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Yukawa superpotential

Leading order terms

 $P_{Y} \sim (\bar{\phi}_{3}^{i}\psi_{i})(\bar{\phi}_{3}^{j}\psi_{j}^{c})H$

 $+(\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})HH_{45}$

 $+ (\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{123}^{j}\psi_{j}^{c})H \\ + (\bar{\phi}_{123}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})H$

2

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Yukawa superpotential

Leading order terms

 $P_{Y} \sim (\bar{\phi}_{3}^{i}\psi_{i})(\bar{\phi}_{3}^{j}\psi_{j}^{c})H$

 $+(\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})HH_{45}$

 $+ (\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{123}^{j}\psi_{j}^{c})H \\ + (\bar{\phi}_{123}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})H$

3

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Yukawa superpotential

Leading order terms

 $P_{Y} \sim (\bar{\phi}_{3}^{i}\psi_{i})(\bar{\phi}_{3}^{j}\psi_{j}^{c})H$

 $+(\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})HH_{45}$

 $+ (\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{123}^{j}\psi_{j}^{c})H \\ + (\bar{\phi}_{123}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})H$

3

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Mass matrices 1

Term by term

$$P_{Y} \sim (ar{\phi}_{3}^{i}\psi_{i})(ar{\phi}_{3}^{j}\psi_{j}^{c})H$$

Respective Dirac mass matrix

$$M^{f} = m_{f} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

= 900

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Mass matrices 2

Term by term

$$+(\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{23}^{j}\psi_{j}^{c})HH_{45}$$

Respective Dirac mass matrix

$$M^{f} = m_{f} \begin{pmatrix} 0 & 0 & 0 \\ 0 & Y^{f} \epsilon^{2} & -Y^{f} \epsilon^{2} \\ 0 & -Y^{f} \epsilon^{2} & 1 + Y^{f} \epsilon^{2} \end{pmatrix}$$

= 900

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Mass matrices 3

Term by term

$$+(\bar{\phi}_{23}^{i}\psi_{i})(\bar{\phi}_{123}^{j}\psi_{j}^{c})H$$

Respective Dirac mass matrix

$$M^{f} = m_{f} \begin{pmatrix} 0 & 0 & 0 \\ \epsilon^{3} & Y^{f} \epsilon^{2} + \epsilon^{3} & -Y^{f} \epsilon^{2} + \epsilon^{3} \\ -\epsilon^{3} & -Y^{f} \epsilon^{2} - \epsilon^{3} & 1 + Y^{f} \epsilon^{2} - \epsilon^{3} \end{pmatrix}$$

And so on...

イロト イポト イヨト イヨト

xford hysics

= 900

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Unwanted terms?

(Not) spoiling the Yukawa terms

$$P_{spoil} \sim (ar{\phi}_3^i \psi_i) (ar{\phi}_{23}^j \psi_j^c) H$$

- Hierarchy spoiled
- Terms like these must be forbidden by added symmetry

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Added symmetry (reduced)

Field	<i>U</i> (1)
ψ	0
ψ^{c}	0
Н	0
H ₄₅	2
$\bar{\phi}_3$	0
$\bar{\phi}_{23}$	-1
$\bar{\phi}_{123}$	1

2

★ E > ★ E >

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Seesaw and SD revisited

$M_1 < M_2 \ll M_3$

$$m_
u = \left(egin{array}{cccc} b_1 & c_1 & . \ b_2 & c_2 & . \ b_3 & c_3 & . \end{array}
ight) \left(egin{array}{cccc} M_1^{-1} & 0 & 0 \ 0 & M_2^{-1} & 0 \ 0 & 0 & M_3^{-1} \end{array}
ight) \left(egin{array}{ccccc} b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \ . & . & . \end{array}
ight)$$

Wanted ν Dirac matrix

$$M_D^{\nu} = \begin{pmatrix} b_1 & c_1 & . \\ b_2 & c_2 & . \\ b_3 & c_3 & . \end{pmatrix} \propto \begin{pmatrix} 0 & c & . \\ b & c & . \\ -b & c & . \end{pmatrix}$$

Thysics

∃ \$\$\$<</p>

イロン 不同 とくほ とくほ とう

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Effective neutrino Lagrangian

Effective terms

$$P_{
u} \sim \lambda_3(ar{\phi}^i_{23}
u_i)(ar{\phi}^j_{23}
u_j)
ightarrow \mathbb{Q}$$

$$+\lambda_2(\bar{\phi}_{123}^i\nu_i)(\bar{\phi}_{123}^j\nu_j) \rightarrow \odot$$

Enforced by effective symmetry:

•
$$\bar{\phi}_{23} \rightarrow -\bar{\phi}_{23}$$

• $\bar{\phi}_{123} \rightarrow \bar{\phi}_{123}$

Vevs reminder

$$egin{aligned} &\langlear{\phi}_{23}
angle \propto (0,1,-1) \ &\langlear{\phi}_{123}
angle \propto (1,1,1) \end{aligned}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

2

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Getting the effective terms

Leading order terms

$$egin{aligned} & \mathcal{P}_{\mathsf{Y}} \sim (ar{\phi}_{23}^{i}
u_{i}) (ar{\phi}_{123}^{j}
u_{j}^{c}) \mathcal{H}
ightarrow @ \ & + (ar{\phi}_{123}^{i}
u_{i}) (ar{\phi}_{23}^{j}
u_{j}^{c}) \mathcal{H}
ightarrow \odot \ & + (ar{\phi}_{3}^{i}
u_{i}) (ar{\phi}_{3}^{j}
u_{j}^{c}) \mathcal{H}
ightarrow decouple \end{aligned}$$

 $P_{M} \sim [(\bar{\phi}_{123}\nu^{c})(\bar{\phi}_{123}\nu^{c})](\theta\phi_{123})(\theta\phi_{123}) \rightarrow @$ $+[(\bar{\phi}_{23}\nu^{c})(\bar{\phi}_{23}\nu^{c})](\theta\phi_{123})(\theta\phi_{3}) \rightarrow \odot$ $+(\theta\nu^{c})(\theta\nu^{c}) \rightarrow decouple$

Ivo de Medeiros Varzielas Family symmetries and fermion masses/mixings

ford: nysics

= 900

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

More unwanted terms

(Not) spoiling the effective terms

$$\mathsf{P}_{\mathsf{spoil}} \sim (ar{\phi}_3^i
u_i) (ar{\phi}_{23}^j
u_j^{\mathsf{c}}) \mathsf{H}$$

$$ightarrow P_{
u} \sim (ar{\phi}^i_3
u_i) (ar{\phi}^j_3
u_j)$$

Need added effective symmetry e.g.:

•
$$\bar{\phi}_3 \rightarrow i\bar{\phi}_3$$

Again the additional symmetry must be used.

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

$\Delta(27)$ invariants

Transformation properties

Field	Z_3	Z'_3
ϕ_1	ϕ_1	ϕ_{3}
ϕ_2	$\alpha \phi_2$	ϕ_1
ϕ_{3}	$(\alpha)^2 \phi_3$	ϕ_2

- Allowed: all $SU(3)_f$ invariants (e.g. $\bar{\phi}^i_A \psi_i$)
- Disallowed: some $\Delta(12)$ invariants (e.g. $\psi_i \psi_i^c$)
- Allowed: higher order invariants (e.g. $\bar{\phi}^i \phi_i \bar{\phi}^i \phi_i$)

イロト イポト イヨト イヨト

xford

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

$\Delta(27)$ family symmetry

Why is it interesting?

- small subgroup of SU(3)_f
- distinct "triplets" and "anti-triplets"
- forbids the "quadratic" invariant $\psi_i \psi_i^c$
- added invariants useful for vacuum alignment
- discrete family symmetries don't have associated D-terms

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Breaking the symmetry

2 generation example

- $V \sim -m^2(\varphi^i \varphi^\dagger_i)$
- Symmetry is continuous, continuum of vacuum states
- No specified direction, just magnitude

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Alignment by soft terms example

2 generation example

- Symmetry is discrete, breaks the continuum of vacuum states
- $V \sim -m^2(\varphi^i \varphi^\dagger_i)$ $\pm m^2_{3/2}(\varphi^i \varphi^\dagger_i \varphi^i \varphi^\dagger_i)$
- Extrema of $|\varphi_1|^4 + |\varphi_2|^4$ with constraint of constant magnitude:
- Positive: \propto (1, 1) \rightarrow V \sim $+2v^4/4$

• Negative:
$$\propto$$
 (0, 1) \rightarrow V $\sim -v^4$

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Quartic term minimisation

•
$$V \sim -m^2(\varphi^i \varphi^\dagger_i)$$

 $\pm m^2_{3/2}(\varphi^i \varphi^\dagger_i \varphi^i \varphi^\dagger_i)$

- For $\varphi = \bar{\phi}_{123}$, positive coefficient yelds $\langle \bar{\phi}_{123} \rangle \propto (1, 1, 1)$
- For $\varphi = \bar{\phi}_3$, negative coefficient yelds $\langle \bar{\phi}_3 \rangle \propto (0,0,1)$

2

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Overview Mass terms HPS tri-bi-maximal mixing Vacuum alignment

Relative alignment

Aligning $\bar{\phi}_{23}$

With SU(3) invariant higher order terms:

- Containing $\bar{\phi}^i_{23}\phi_{123_i}$ with positive coupling
- Term keeping the vanishing component away from the $\bar{\phi}_3$ direction

$$ightarrow \langle ar{\phi}_{23}
angle \propto (0,1,-1)$$

Mixing angles predicted

The predictions

PMNS angles

•
$$s_{12}^2 \approx \frac{1}{3} \pm \substack{0.052\\0.048}$$

• $s_{23}^2 \approx \frac{1}{2} \pm \substack{0.061\\0.058}$
• $s_{13}^2 \approx 0.0028$

Mixing angles values measured experimentally

•
$$s_{12}^2 = 0.30 \pm 0.08$$

• $s_{23}^2 = 0.50 \pm 0.18$

イロト イポト イヨト イヨト

•
$$s_{13}^2 < 0.047$$

₹ 9Q@

Mixing angles predicted

The predictions

PMNS angles

•
$$s_{12}^2 \approx \frac{1}{3} \pm \substack{0.052\\0.048}$$

• $s_{23}^2 \approx \frac{1}{2} \pm \substack{0.061\\0.058}$
• $s_{13}^2 \approx 0.0028$

Mixing angles values measured experimentally • $s_{12}^2 = 0.30 \pm 0.08$ • $s_{23}^2 = 0.50 \pm 0.18$ • $s_{13}^2 < 0.047$

イロト 不得 トイヨト イヨト

= 900

Mixing angles predicted

Summary

$\Delta(27)$ family symmetry

- The model is viable and unifiable.
- Seesaw mechanism and alignment of vevs play key roles.

= 900

ヘロト ヘ回ト ヘヨト ヘヨト

Mixing angles predicted

Summary

$\Delta(27)$ family symmetry

- The model is viable and unifiable.
- Seesaw mechanism and alignment of vevs play key roles.

2

ヘロト ヘ回ト ヘヨト ヘヨト