Twistor inspired developments in perturbative QCD

Nigel Glover
IPPP, University of Durham

Rutherford Appleton Laboratory 29 November 2006

Hard processes in Hadron-Hadron collisions

- partonic cross sections $\hat{\sigma}_{i j}$
- parton distributions f_{i}
- renormalization/factorization scale μ_{R} / μ_{F}
- + parton shower + hadronisation model

The unphysical scales - μ_{R}

The renormalisation scale μ_{R} is introduced when redefining the bare fields in terms of the physical fields at scale μ_{R}. It is unphysical - and the answer shouldnt depend on it - but does because we work at a fixed order in perturbation theory. Therefore, you can choose any value (within reason). Typical values are the hard scale in the process $\mu_{R} \sim E_{T}$.

Example: $p p \rightarrow$ jet $+X$ at LO α_{s}^{2} for various values of μ_{R} compared to $\mu_{R}=E_{T}$

The unphysical scales - μ_{F}

The factorisation scale μ_{F} is introduced when absorbing the divergence from collinear radiation into the parton densities. It is unphysical - and the answer shouldnt depend on it - but does because we work at a fixed order in perturbation theory. Typically we think of radiation at a transverse energy $>\mu_{F}$ as being detectable so that $\mu_{F} \sim E_{T}$ is a reasonable choice.

Example: $p p \rightarrow$ jet $+X$ at LO The effective parton-parton luminosities for various values of μ_{F} compared to $\mu_{F}=E_{T}$ at $\eta_{1}=\eta_{2}=0$

Unphysical scale dependence

- typically, NLO reduces scale uncertainty by factor 2 over LO
\checkmark maybe to $\pm 30 \%$
- typically, NNLO reduces scale uncertainty by factor 2 over NLO
\checkmark maybe $\pm 10 \%$
x won't know till you do it
\checkmark plus many other improvements in modelling hard scattering at NNLO

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

LO \checkmark matrix elements automatically generated up to $2 \rightarrow 8$ or more
$\checkmark \quad$ plus automatic integration over phase space HELAC/PHEGAS, MADGRAPH/MADEVENT, SHERPA/AMEGIC++, COMPHEP, GRACE, ...
\checkmark able to interface with parton showers - CKKW very good for estimating importance of various processes in different models properly populate phase space with multiple hard objects
x rate very dependent on choice of renormalisation/factorisation scales

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

NLO \checkmark parton level integrators available for most $2 \rightarrow 2$ Standard Model and MSSM processes for some time
\checkmark extensively used at LEP, TEVATRON and HERA
EVENT, JETRAD, MCFM, DISENT, etc
reduced renormalisation scale uncertainty
can be matched with parton shower MC@NLO - Frixione, Webber

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

NLO $\sqrt{ }$ some $2 \rightarrow 3$ processes available at NLO
e.g. backgrounds $p p \rightarrow 3$ jets, $V+2$ jets, $\gamma \gamma+$ jet, $V+b \bar{b}$
as well as signals $p p \rightarrow t \bar{t} H, b \bar{b} H, q q H, H H H, t \bar{t} j$
$x \quad$ many still missing $V V+$ jet, $t \bar{t}+$ jet, etc
x understood how to do, but tedious and painstaking

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

NLO \boldsymbol{x} no $2 \rightarrow 4$ LHC cross sections known
\boldsymbol{x} need to extend range of available calculations to e.g. $p p \rightarrow W+$ multijets that are backgrounds to New Physics
$\checkmark 4$ gluons@one-loop, Ellis, Sexton, 1986, $\sigma_{2 j}$, 1992
$\checkmark 5$ gluons@one-loop, Bern, Dixon, Kosower, 1993, $\sigma_{3 j}, 2000$
$\checkmark 6$ gluons@one-loop, many authors, $2006 \sigma_{4 j}, 20$??
x need a more efficient way of evaluating loop contributions and constructing σ

How to calculate scattering amplitudes

1. Off-shell methods

Traditional Feynman diagram approach
2. On-shell methods

Based on S-matrix ideas of 1960's but recently inspired by Witten's proposal to relate perturbative gauge theory amplitudes to topological string theory in twistor space

Witten, hep-th/0312171
\Rightarrow new ways to calculate amplitudes in massless gauge theories:

Off-shell methods

Traditional Feynman diagram approach for off-shell Greens functions
\checkmark Direct link to Lagrangian
\checkmark Easy to adapt to any model
\checkmark Easy to include massive particles with/without spin
\checkmark Easy to automate
\Rightarrow tree-level packages Madgraph/Grace/CompHep/...
\checkmark Off-shell Berends-Giele recursion relations
\Rightarrow tree-level packages
Alpgen/HELAC/PHEGAS/...
x Many Feynman diagrams
x Large cancellations between diagrams
x Loop amplitudes manpower intensive

Example

Multi-jet production at the LHC using HELAC/PHEGAS
Draggiotis, Kleiss, Papadopoloulos

\# of jets	2	3	4	5	6	7	8
\# of dist.processes	10	14	28	36	64	78	130
total \# of processes	126	206	621	861	1862	2326	4342
$\sigma(n b)$	-	91.41	6.54	0.458	0.030	0.0022	0.00021
$\%$ Gluonic	-	45.7	39.2	35.7	35.1	33.8	26.6

- The number of Feynman diagrams for an n gluon process increases very quickly with n
\Rightarrow for the 10 gluon amplitude there are 10,525,900 diagrams
\Rightarrow Feynman diagrams very inefficient for many legs
- Control the quantum numbers of the scattering particles

On-shell methods

New (and puzzling) insights into field theory amplitudes \Rightarrow new ways to calculate amplitudes in massless gauge theories:
\checkmark MHV rules
Cachazo, Svrcek and Witten
\Rightarrow NEW analytic results for some QCD tree amplitudes with any number of legs
$\checkmark \quad$ BCF on-shell recursion relations Britto, Cachazo and Feng (and Witten)
\Rightarrow NEW compact results for some multileg QCD tree amplitudes
$\checkmark \quad$ Unitarity and cut-constructibility
Bern, Dixon, Dunbar, Kosower; Britto, Cachazo and Feng; ...
\Rightarrow NEW analytic one-loop amplitudes in massless supersymmetric theories
\checkmark Recursive derivation of rational terms
Bern, Dixon, Kosower + Berger, Forde; Xiao,Yang, Zhu
\Rightarrow NEW analytic one-loop amplitudes for multigluon amplitudes

Spinor Helicity Formalism

- In Weyl (chiral) representation, each helicity state is represented by a bi-spinor ($a=1,2$)

$$
\begin{array}{ll}
u_{+}(p)=\lambda_{p a}, & u_{-}(p)=\tilde{\lambda}_{p}^{\dot{a}}, \\
\overline{u_{+}(p)}=\tilde{\lambda}_{p \dot{a}}, & \overline{u_{-}(p)}=\lambda_{p}^{a}
\end{array}
$$

so that

$$
\begin{aligned}
\langle i j\rangle & =\overline{u_{-}\left(p_{i}\right)} u_{+}\left(p_{j}\right)=\lambda_{i}^{a} \lambda_{j a}=\epsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b} \\
{[i j] } & =\overline{u_{+}\left(p_{i}\right)} u_{-}\left(p_{j}\right)=\tilde{\lambda}_{i a} \tilde{\lambda}_{j}^{\dot{a}}=-\epsilon_{i \dot{b}} \tilde{\lambda}_{i}^{\dot{a}} \tilde{\lambda}_{j}^{\dot{b}}
\end{aligned}
$$

- We can write massless vector

$$
p_{a \dot{a}} \equiv p_{\mu} \sigma_{a \dot{a}}^{\mu}=\lambda_{p a} \tilde{\lambda}_{p \dot{a}}
$$

Spinor Helicity Formalism

- Polarisation vectors for particle i :

$$
\varepsilon_{i a \dot{a}}^{-}=\frac{\lambda_{i a} \tilde{\eta}_{\dot{a}}}{\left[\tilde{\lambda}_{i} \tilde{\eta}\right]}, \quad \varepsilon_{i a \dot{a}}^{+}=\frac{\eta_{a} \tilde{\lambda}_{i \dot{a}}}{\left\langle\eta \lambda_{i}\right\rangle}
$$

- For real momenta in Minkowski space,

$$
\begin{gathered}
\tilde{\lambda}=\lambda^{*} \\
\langle i j\rangle^{*}=-[i j]
\end{gathered}
$$

- For space-time signature $(+,+,-,-), \tilde{\lambda}, \lambda$ are real and independent
- Amplitudes are functions of the λ_{i} and $\tilde{\lambda}_{i}$

Gluonic helicity amplitudes

- A gluon has either positive or negative helicity (right-handed or left-handed)
- A multigluon amplitude can be characterised by the helicity of the gluons
- There will n_{+}positive helicities and n_{-}negative helicities.
- The order of helicities matters:
$--++++++\ldots$ is not the same as $-+-+++++\ldots$ etc.

Gluonic helicity amplitudes

Each row describes scattering with n_{+}positive helicities and n_{-}negative helicities.
Each circle represents an allowed helicity configuration - from all positive on the right to all negative on the left

Gluonic helicity amplitudes

For example, the result of computing the 25 diagrams for the colour-ordered five-gluon process yields

$$
\begin{aligned}
& A_{5}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=0 \\
& A_{5}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

In fact, for n point colour-ordered amplitudes,

$$
\begin{aligned}
A_{n}\left(1^{ \pm}, 2^{+}, 3^{+}, \ldots, n^{+}\right) & =0 \\
A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right) & =\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle} \\
A_{n}\left(1^{-}, 2^{+}, 3^{-}, \ldots, n^{+}\right) & =\frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
\end{aligned}
$$

Maximally helicity violating (MHV) amplitudes

Gluonic helicity amplitudes

effective tree-level supersymmetry

Gluonic helicity amplitudes

$$
A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Twistor Space

Witten, hep-th/0312171
Witten observed that in twistor space external points lie on certain algebraic curves
\Rightarrow degree of curve is related to the number of negative helicities and loops

$$
d=n_{-}-1+l
$$

Twistor Space

Twistor inspired developments in perturbative QCD - p. 2

MHV rules

Start from on-shell MHV amplitude and define off-shell vertices
Cachazo, Svrcek and- Witten

$$
V\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}, P^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle \cdots\langle n-1 n\rangle\langle n P\rangle\langle P 1\rangle}
$$

and

$$
V\left(1^{-}, 2^{+}, 3^{+}, \ldots, n^{+}, P^{-}\right)=\frac{\langle 1 P\rangle^{4}}{\langle 12\rangle \cdots\langle n-1 n\rangle\langle n P\rangle\langle P 1\rangle}
$$

Crucial step is off-shell continuation $P^{2} \neq 0$:

$$
\langle i P\rangle=\frac{\left.\left\langle i^{-}\right| P \mid \eta^{-}\right]}{[P \eta]}=\sum_{j} \frac{\left.\left\langle i^{-}\right|, \mid, \eta^{-}\right]}{[P \eta]}
$$

where $P=\sum_{j} j$ and η is lightlike auxiliary vector

MHV rules

Must connect up a positive helicity off-shell line to a negative helicity off-shell line with a scalar propagator

Connecting two MHV's \Rightarrow amplitude with 3 negative helicities Connecting three MHV's \Rightarrow amplitude with 4 negative helicities etc.

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams

Example: six gluon scattering

There are six MHV graphs

Example: six gluon scattering

Some graphs are not allowed e.g.

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams
Step 2 Apply MHV rules to each diagram

Example: six gluon scattering: diagram 1

$$
\frac{\langle 12\rangle^{4}}{\langle 56\rangle\langle 61\rangle\langle 12\rangle\langle 2| P \mid \eta]\langle 5| P \mid \eta]} \times \frac{1}{s_{34}} \times \frac{\langle 3| P \mid \eta]^{4}}{\langle 34\rangle\langle 4| P \mid \eta]\langle 3| P \mid \eta]}
$$

with $P=3+4=-(1+2+5+6)$

Example: six gluon scattering: diagram 2

$$
\frac{\langle 12\rangle^{4}}{\langle 61\rangle\langle 12\rangle\langle 2| P \mid \eta]\langle 6| P \mid \eta]} \times \frac{1}{s_{345}} \times \frac{\langle 3| P \mid \eta]^{4}}{\langle 34\rangle\langle 45\rangle\langle 5| P \mid \eta]\langle 3| P \mid \eta]}
$$

with $P=3+4+5=-(1+2+6)$

Example: six gluon scattering

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

$$
A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)
$$

Step 1 Draw all the allowed MHV diagrams
Step 2 Apply MHV rules to each diagram
Step 3 Add up diagrams and check η independence

Next-to MHV amplitude for n gluons

Simplest case: $A_{n}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, \ldots, n^{+}\right)$
$2(n-3)$ graphs
Cachazo, Svrcek and Witten

$$
\begin{aligned}
A & =\sum_{i=3}^{n-1} \frac{\langle 1|(2, i) \mid \eta]^{3}}{\langle(i+1)|(2, i) \mid \eta]\langle i+1 i+2\rangle \ldots\langle n 1\rangle} \frac{1}{s_{2, i}^{2}} \frac{\langle 23\rangle^{3}}{\langle 2|(2, i) \mid \eta]\langle 34\rangle \cdots\langle i|(2, i) \mid \eta]} \\
& +\sum_{i=4}^{n} \frac{\langle 12\rangle^{3}}{\langle 2|(3, i) \mid \eta]\langle(i+1)|(3, i) \mid \eta] \ldots\langle n 1\rangle} \frac{1}{s_{3, i}^{2}} \frac{\langle 3|(3, i) \mid \eta]^{3}}{\langle 34\rangle \cdots\langle i-1 i\rangle\rangle\langle i|(3, i) \mid \eta]}
\end{aligned}
$$

where $(k, i)=k+\cdots+i$ is the off-shell momentum
\Rightarrow Lorentz invariant and gauge invariant expressions

Generating all the tree amplitudes

Amplitudes with $i-$ and $j+$ helicities

- MHV rules always adds one negative helicity and any number of positive helicities
\Rightarrow maps out all allowed tree amplitudes

Other processes

MHV rules have been generalised to many other processes
\checkmark with massless fermions - quarks, gluinos
Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze
\checkmark with massless scalars - squarks
Georgiou, EWNG and Khoze; Khoze
$\checkmark \quad$ with an external Higgs boson
Dixon, EWNG, Khoze; Badger, EWNG, Khoze
\checkmark with an external weak boson
Bern, Forde, Kosower and Mastrolia
Has provided new analytic results for n-particle amplitudes Also useful for studying infrared properties of amplitudes

Birthwright, EWNG, Khoze and Marquard

BCFW on-shell recursion relations

Britto, Cachazo, Feng; Roiban, Spradlin, Volovich

Based on elementary complex analysis - Cauchy Integral Formula

$$
\frac{1}{2 \pi i} \oint \frac{d z}{z} A(z)=\text { sum of residues }
$$

provided that $A(z) \rightarrow 0$ as $z \rightarrow \infty$

$$
\text { sum of residues }=A(0)+\ldots
$$

Simple enough, but how is this related to scattering amplitudes?

BCFW on-shell recursion relations

Britto, Cachazo, Feng; Roiban, Spradlin, Volovich
Lets consider an n particle amplitude $A(0)$.

hatted momenta are shifted to put on-shell

$$
\hat{i}=i+z \eta, \quad \hat{j}=j-z \eta, \quad \hat{P}=P+z \eta
$$

\Rightarrow each vertex is an on-shell amplitude

BCFW recursion relations

- It turns out that the shift η is not a momentum, but

$$
\eta=\lambda_{i} \tilde{\lambda}_{j} \quad O R \quad \eta=\lambda_{j} \tilde{\lambda}_{i}
$$

- The parameter z is fixed by $\hat{P}^{2}=0$

$$
z=\frac{P^{2}}{\langle j| P \mid i]}
$$

- Easy to prove that by complex analysis based on fact that only simple poles in z occur and that $A(z)$ vanishes as $z \rightarrow \infty$

Britto, Cachazo, Feng and Witten

- Requires on-shell three-point vertex contributions - both MHV and MHV

BCFW - six gluon example

If we select 3 and 4 to be the special gluons, there are only three diagrams (for any helicities)

For this helicity assignment, the middle diagram is zero!. $A_{6}\left(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}\right)$

Extremely compact analytic results for up to 8 gluons

Other processes

BCF recursion relations have been generalised to other processes
\checkmark with massless fermions - quarks, gluinos
gravitons
Bedford, Brandhuber, Spence and Travaglini; Cachazo and Svrcek
There is nothing (in principle) to stop this approach being applied to particles with mass.
\checkmark massive coloured scalars
Badger, EWNG, Khoze and Svrcek
\checkmark massive vector bosons and heavy quarks
Badger, EWNG and Khoze

One loop amplitudes

- So far, supersymmetry was not a major factor - tree level amplitudes same for $\mathcal{N}=4 \mathcal{N}=1$ and QCD
- Not true at the loop level due to circulating states

$$
\begin{aligned}
A_{n}^{\mathcal{N}=4} & =A_{n}^{[1]}+4 A_{n}^{[1 / 2]}+3 A_{n}^{[0]} \\
A_{n}^{\mathcal{N}=1, \text { chiral }} & =A_{n}^{[1 / 2]}+A_{n}^{[0]} \\
A_{n}^{\text {glue }} & =A_{n}^{\mathcal{N}=4}-4 A_{n}^{\mathcal{N}=1, \text { chiral }}+A_{n}^{[0]}
\end{aligned}
$$

- All plus and nearly all-plus amplitudes do not vanish for non-supersymmetric QCD
- A lot of progress by a lot of people

One loop amplitudes

- Key point is that loop amplitudes contain both poles and cuts - e.g. $\log (x)$ has cut for negative x
- Cut contributions are fully constructible by using unitarity - Cut lines are on-shell and 4-dimensional

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

- Pole contributions can be constructed using BCF type recursion and knowledge of factorisation properties

Forde, Zhu, ...
Collectively this is the Unitarity Bootstrap

SUSY QCD loops

$\mathcal{N}=4$ and $\mathcal{N}=1$ one-loop amplitudes are constructible from their 4-dimensional cuts
\Rightarrow employ unitarity techniques
Bern, Dixon, Dunbar, Kosower
\checkmark For $\mathcal{N}=4$ all amplitudes are a linear combination of known box integrals

$$
A_{\mathbf{n}}=\Sigma
$$

Twistor space interpretation

- Coefficients of boxes have very interesting structures.

Bern, Del Duca, Dixon, Kosower; Britto, Cachazo, Feng

Twistor space interpretation

- Four mass box first appears in eight-point amplitude with four negative and four positive helicities

Bern, Dixon, Kosower

e.g.

2 Still not fully understood

QCD loops

x QCD amplitudes more complicated because they are not 4-dimensional cut constructible.
Rational contribution not probed by 4-d cut
x All plus and almost all plus amplitudes no longer zero - but pure rational functions. Not protected by SWI.
\checkmark Rational parts of infrared divergent amplitudes computed using
\checkmark on-shell recursion relation
Bern, Dixon and Kosower
Recursion relations complicated by double pole terms and boundary terms
\checkmark Direct Feynman diagram evaluation of rational part
Xiao, Yang, Zhu
$\checkmark \quad d$-dimensional cuts
Anastasiou, Britto, Feng, Kunszt, Mastrolia

Six gluon amplitude

\checkmark Analytic computation
Bedford, Berger, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Buchbinder, Cachazo, Dixon, Dunbar, Feng, Forde, Kosower, Mastrolia, Perkins, Spence, Travaglini, Xiao, Yang, Zhu

Amplitude	$\mathcal{N}=4$	$\mathcal{N}=1$	$\mathcal{N}=0$ (cut)	$\mathcal{N}=0$ (rat)
$--++++$	BDDK (94)	BDDK (94)	BDDK (94)	BDK (94)
$-+-+++$	BDDK (94)	BDDK (94)	BBST (04)	BBDFK (06), XYZ (06)
$-++-++$	BDDK (94)	BDDK (94)	BBST (04)	BBDFK (06), XYZ (06)
$---++$	BDDK (94)	BDDK (94)	BBDI (05), BFM (06)	BBDFK (06), XYZ (06)
$-\quad+-++$	BDDK (94)	BBDP (05), BBCF (05)	BFM (06)	XYZ (06)
$-+-+-+$	BDDK (94)	BBDP (05), BBCF (05)	BFM (06)	XYZ (06)

\checkmark Numerical evaluation Ellis, Giele, Zanderighi (06)

Summary - I

\checkmark On-shell techniques are a very exciting and rapidly developing field MHV rules for tree-level
Very simple way of deriving n-point amplitudes for massless partons
$\checkmark \quad$ BCFW recursion relations for tree-level
Very powerful method for deriving amplitudes for both massless and massive particles
x Berends-Giele recursion still looks to be numerically faster
\checkmark Generalised unitarity and one-loop amplitudes
SUSY amplitudes cut constructible - coefficients of loop integrals can be read off from graphs
QCD amplitudes contain cut-non constructible parts. These simple pole terms can be attacked using the BCFW relations

Bern, Dixon, Kosower
Or by direct evaluation using Feynman diagrams

Summary - II

\checkmark New methods already competitive with traditional methods for loop amplitudes with massless particles - gluons, quarks
Will definitely see all six parton one-loop amplitudes in next few months
x Not necessarily the most interesting phenomenologically
? Will new methods be useful for amplitudes with heavy particles - top quarks, susy particles, Higgs bosons, vector bosons
In principle heavy particles not a problem - but certainly a complication. yes for one vector boson plus multiparton e.g. $V+$ multijet probable for two vector boson plus multiparton e.g. $V V+$ multijet much more difficult for $p p \rightarrow t \bar{t} b \bar{b}$

SPARE SLIDES

Collider Physics

1. Predictions for multiparticle final states that occur at high rate and form background to New Physics

High multiplicity, but low order - typically LO or NLO
For example, $p p \rightarrow V+4$ jets is background to $p p \rightarrow t \bar{t}$ and other new physics.
2. Precise predictions for hard $p p$ processes involving "standard particles" like W, Z, jets, top, Higgs, ..

Low multiplicity, but high order - NNLO is emerging standard
For example, Drell Yan cross section.

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

NNLO \checkmark (inclusive) Drell-Yan and Higgs total cross sections - Anastasiou, Dixon, Melnikov, Petriello
\checkmark (inclusive) Drell-Yan and Higgs rapidity distributions - Anastasiou, Dixon, Melnikov, Petriello
\checkmark NNLO evolution - Moch, Vogt, Vermaseren
x need full set of NNLO observables for global fit. DIS and Drell-Yan will not be enough

Gauge boson production at the LHC

Gauge boson production at the LHC

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello

At LHC NNLO perturbative accuracy better than 1\%
\Rightarrow use to determine parton-parton luminosities at the LHC

State of the Art

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
1	LO					
α_{s}	NLO	LO				
α_{s}^{2}	NNLO	NLO	LO			
α_{s}^{3}		NNLO	NLO	LO		
α_{s}^{4}				NLO	LO	
α_{s}^{5}					NLO	LO

NNLO \checkmark want to calculate $2 \rightarrow 2$ to few percent accuracy and use as standard candle to determine pdfs and α_{s} more accurately
\checkmark with global pdf fit, gives impact on all observables
x still not available

Berends-Giele : Off-shell recursion relations

Full amplitudes can be built up from simpler amplitudes with fewer particles

Purple gluons are off-shell, green gluons are on-shell.
This is a recursion relation built from off-shell currents.
Berends, Giele
Particularly suited to numerical solution
ALPGEN, HELAC/PHEGAS

Common methods: Colour Ordered Amplitudes

$$
\mathcal{A}_{n}(1, \ldots, n)=\sum_{\text {perms }} \operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) A_{n}(1, \ldots, n)
$$

Colour-stripped amplitudes A_{n} : cyclically ordered

Order of external gluons fixed
The subamplitudes A_{n} have nice properties in the infrared limits.

Can reconstruct the full amplitude \mathcal{A}_{n} from A_{n}. In the large N limit,

$$
\left|\mathcal{A}_{n}(1, \ldots, n)\right|^{2} \sim N^{n-2} \sum_{\text {perms }}\left|A_{n}(1, \ldots, n)\right|^{2}
$$

Twistor Space

Penrose, 1967
Amplitudes in twistor space obtained by Fourier transform with respect to positive helicity spinors,

$$
\tilde{\lambda}_{\dot{a}}=i \frac{\partial}{\partial \mu^{\dot{a}}}, \quad \quad \mu^{\dot{a}}=i \frac{\partial}{\partial \tilde{\lambda}_{\dot{a}}}
$$

Momentum conservation yields

$$
\delta\left(\sum k_{j}\right)=\int d^{4} x \exp \left(i \sum_{j} x \cdot k_{j}\right)=\int d^{4} x \exp \left(i x^{a \dot{a}} \sum_{j} \lambda_{j a} \tilde{\lambda}_{j \dot{a}}\right)
$$

so that the amplitude in twistor space is

$$
\tilde{A}\left(\lambda_{i}, \mu_{i}\right)=\int d^{4} x \int \prod_{i} \frac{d^{2} \tilde{\lambda}_{i}}{(2 \pi)^{2}} \exp \left(i \sum_{j}\left(\mu_{j}^{\dot{a}}+x^{a \dot{a}} \lambda_{j a}\right) \tilde{\lambda}_{j \dot{a}}\right) A\left(\lambda_{i}, \tilde{\lambda}_{i}\right)
$$

