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Introduction

An important feature of the Standard Model (SM) is that “it works”: it is consistent with,

or verified by, all available data, with no compelling evidence for physics beyond.1 Secondly,

it is a unified description, in terms of “gauge theories” of all the interactions of known

particles (except gravity). A gauge theory is one that possesses invariance under a set of

“local transformations”, i.e. transformations whose parameters are space-time dependent.

Electromagnetism is a well-known example of a gauge theory. In this case the gauge trans-

formations are local complex phase transformations of the fields of charged particles, and

gauge invariance necessitates the introduction of a massless vector (spin-1) particle, called

the photon, whose exchange mediates the electromagnetic interactions.

In the 1950’s Yang and Mills considered (as a purely mathematical exercise) extending gauge

invariance to include local non-abelian (i.e. non-commuting) transformations such as SU(2).

In this case one needs a set of massless vector fields (three in the case of SU(2)), which were

formally called “Yang-Mills” fields, but are now known as “gauge fields”.

In order to apply such a gauge theory to weak interactions, one considers particles which

transform into each other under the weak interaction, such as a u-quark and a d-quark, or

an electron and a neutrino, to be arranged in doublets of weak isospin. The three gauge

bosons are interpreted as the W± and Z bosons, that mediate weak interactions in the same

way that the photon mediates electromagnetic interactions.

The difficulty in the case of weak interactions was that they are known to be short range, me-

diated by very massive vector bosons, whereas Yang-Mills fields are required to be massless

in order to preserve gauge invariance. The apparent paradox was solved by the applica-

tion of the “Higgs mechanism”. This is a prescription for breaking the gauge symmetry

spontaneously. In this scenario one starts with a theory that possesses the required gauge

invariance, but where the ground state of the theory is not invariant under the gauge transfor-

mations. The breaking of the invariance arises in the quantization of the theory, whereas the

Lagrangian only contains terms which are invariant. One of the consequences of this is that

the gauge bosons acquire a mass and the theory can thus be applied to weak interactions.

Spontaneous symmetry breaking and the Higgs mechanism have another extremely impor-

tant consequence. It leads to a renormalizable theory with massive vector bosons. This

means that one can carry out a programme of renormalization in which the infinities that

1In saying so we have taken the liberty to allow for neutrino masses (see chapter 7) and discarded some

deviations in electroweak precision measurements which are far from conclusive; however, note that there is

a 3.4σ deviation between measurement and SM prediction of g−2 of the muon, see the remarks in chapter 8.



arise in higher-order calculations can be reabsorbed into the parameters of the Lagrangian

(as in the case of QED). Had one simply broken the gauge invariance explicitly by adding

mass terms for the gauge bosons, the resulting theory would not have been renormalizable

and therefore could not have been used to carry out perturbative calculations. A consequence

of the Higgs mechanism is the existence of a scalar (spin-0) particle, the Higgs boson.

The remaining step was to apply the ideas of gauge theories to the strong interaction. The

gauge theory of the strong interaction is called “Quantum Chromo Dynamics” (QCD). In this

theory the quarks possess an internal property called “colour” and the gauge transformations

are local transformations between quarks of different colours. The gauge bosons of QCD are

called “gluons” and they mediate the strong interaction.

The union of QCD and the electroweak gauge theory, which describes the weak and elec-

tromagnetic interactions, is known as the Standard Model. It has a very simple structure

and the different forces of nature are treated in the same fashion, i.e. as gauge theories.

It has eighteen fundamental parameters, most of which are associated with the masses of

the gauge bosons, the quarks and leptons, and the Higgs. Nevertheless these are not all

independent and, for example, the ratio of the W and Z boson masses are (correctly) pre-

dicted by the model. Since the theory is renormalizable, perturbative calculations can be

performed at higher order that predict cross sections and decay rates for both strongly and

weakly interacting processes. These predictions, when confronted with experimental data,

have been confirmed very successfully. As both predictions and data are becoming more and

more precise, the tests of the Standard Model are becoming increasingly stringent.



1 QED as an Abelian Gauge Theory

The aim of this lecture is to start from a symmetry of the fermion Lagrangian and show

that “gauging” this symmetry (= making it well behaved) implies classical electromagnetism

with its gauge invariance, the eēγ interaction, and that the photon must be massless.

1.1 Preliminaries

In the Field Theory lectures at this school, the quantum theory of an interacting scalar

field was introduced, and the voyage from the Lagrangian to the Feynman rules was made.

Fermions can be quantised in a similar way, and the propagators one obtains are the Green

functions for the Dirac wave equation (the inverse of the Dirac operator) of the QED/QCD

course. In this course, I will start from the Lagrangian (as opposed to the wave equation) of

a free Dirac fermion, and add interactions, to construct the Standard Model Lagrangian in

classical field theory. That is, the fields are treated as functions, and I will not discuss creation

and annihiliation operators. However, to extract Feynman rules from the Lagrangian, I will

implicitly rely on the rules developed for scalar fields in the Field Theory course.

1.2 Gauge Transformations

Consider the Lagrangian density for a free Dirac field ψ:

L = ψ (iγµ∂µ −m)ψ (1.1)

This Lagrangian density is invariant under a phase transformation of the fermion field

ψ → eiQωψ, ψ → eiQωψ, (1.2)

where Q is the charge operator (Qψ = +ψ,Qψ̄ = −ψ̄), ω is a real constant (i.e. independent

of x) and ψ is the conjugate field.

The set of all numbers e−iω form a group2. This particular group is “abelian” which is to

say that any two elements of the group commute. This just means that

e−iω1e−iω2 = e−iω2e−iω1 . (1.3)

2A group is a mathematical term for a set, where multiplication of elements is defined and results in

another element of the set. Furthermore, there has to be a 1 element (s.t. 1 × a = a) and an inverse (s.t.

a × a−1 = 1) for each element a of the set.



This particular group is called U(1) which means the group of all unitary 1× 1 matrices. A

unitary matrix satisfies U+ = U−1 with U+ being the adjoint matrix.

We can now state the invariance of the Lagrangian eq. (1.1) under phase transformations in a

more fancy way by saying that the Lagrangian is invariant under global U(1) transformations.

By global we mean that ω does not depend on x.

For the purposes of these lectures it will usually be sufficient to consider infinitesimal group

transformations, i.e. we assume that the parameter ω is sufficiently small that we can expand

in ω and neglect all but the linear term. Thus we write

e−iω = 1 − i ω + O(ω2). (1.4)

Under such infinitesimal phase transformations the field ψ changes according to

ψ → ψ + δψ = ψ + i Qω ψ, (1.5)

and the conjugate field ψ by

ψ → ψ + δψ = ψ + i Qω ψ = ψ − i ω ψ, (1.6)

such that the Lagrangian density remains unchanged (to order ω).

At this point we should note that global transformations are not very attractive from a

theoretical point of view. The reason is that making the same transformation at every

space-time point requires that all these points ’know’ about the transformation. But if I

were to make a certain transformation at the top of Mont Blanc, how can a point somewhere

in England know about it? It would take some time for a signal to travel from the Alps to

England.

Thus, we have two options at this point. Either, we simply note the invariance of eq. (1.1)

under global U(1) transformations and put this aside as a curiosity, or we insist that in-

variance under gauge transformations is a fundamental property of nature. If we take the

latter option we have to require invariance under local transformations. Local means that

the parameter of the transformation, ω, now depends on the space-time point x. Such local

(i.e. space-time dependent) transformations are called “gauge transformations”.

If the parameter ω depends on the space-time point then the field ψ transforms as follows

under infinitesimal transformations

δψ(x) = i ω(x)ψ(x); δψ(x) = −i ω(x)ψ(x). (1.7)

Note that the Lagrangian density eq. (1.1) now is no longer invariant under these trans-

formations, because of the partial derivative between ψ and ψ. This derivative will act on



the space-time dependent parameter ω(x) such that the Lagrangian density changes by an

amount δL, where

δL = −ψ(x) γµ [∂µQω(x)]ψ(x). (1.8)

The square brackets in [∂µQω(x)] are introduced to indicate that the derivative ∂µ acts only

inside the brackets. It turns out that we can restore gauge invariance if we assume that the

fermion field interacts with a vector field Aµ, called a “gauge field”, with an interaction term

− e ψ γµAµQψ (1.9)

added to the Lagrangian density which now becomes

L = ψ (iγµ (∂µ + i eQAµ) −m)ψ. (1.10)

In order for this to work we must also assume that apart from the fermion field transform-

ing under a gauge transformation according to eq. (1.7) the gauge field, Aµ, also changes

according to

−eQAµ → −eQ(Aµ + δAµ(x)) = −eQ Aµ +Q∂µ ω(x). (1.11)

So δAµ(x) = −Q∂µ ω(x)/e.

Exercise 1.1

Using eqs. (1.7) and (1.11) show that under a gauge transformation

δ(−e ψ γµAµψ) = −ψ(x) γµ [∂µQω(x)]ψ(x).

This change exactly cancels with eq. (1.8), so that once this interaction term has been added

the gauge invariance is restored. We recognize eq. (1.10) as being the fermionic part of the

Lagrangian density for QED, where e is the electric charge of the fermion and Aµ is the

photon field.

In order to have a proper quantum field theory, in which we can expand the photon field Aµ

in terms of creation and annihilation operators for photons, we need a kinetic term for the

photon, i.e. a term which is quadratic in the derivative of the field Aµ. Without such a term

the Euler-Lagrange equation for the gauge field would be an algebraic equation and we could

use it to eliminate the gauge field altogether from the Lagrangian. We need to ensure that

in introducing a kinetic term we do not spoil the invariance under gauge transformations.

This is achieved by defining the field strength tensor, Fµν , as

Fµν ≡ ∂µAν − ∂νAµ, (1.12)

where the derivative is understood to act on the A-field only.3 It is easy to see that under

the gauge transformation eq. (1.11) each of the two terms on the right hand side of eq. (1.12)

3Strictly speaking we should therefore write Fµν = [∂µAν ] − [∂νAµ]; you will find that the brackets are

often omitted.



change, but the changes cancel out. Thus we may add to the Lagrangian any term which

depends on Fµν (and which is Lorentz invariant, thus, with all Lorentz indices contracted).

Such a term is aFµνF
µν . This gives the desired term which is quadratic in the derivative of

the field Aµ. If we choose the constant a to be −1/4 then the Lagrange equations of motion

match exactly (the relativistic formulation of) Maxwell’s equations.4

We have thus arrived at the Lagrangian density for QED, but from the viewpoint of de-

manding invariance under U(1) gauge transformations rather than starting with Maxwell’s

equations and formulating the equivalent quantum field theory.

The Lagrangian density for QED is:

L = −1

4
FµνF

µν + ψ (iγµ (∂µ + i eQAµ) −m)ψ. (1.13)

Exercise 1.2

Starting with the Lagrangian density for QED write down the Euler-Lagrange

equations for the gauge field Aµ and show that this results in Maxwell’s equa-

tions.

In the Field Theory lectures, we have seen that a term λφ4 in the Lagrangian gave 4!λ as

the coupling of four φs in perturbation theory. Neglecting the combinatoric factors, it is

plausible that eq. (1.13) gives the γēe Feynman Rule used in the QED course, −ieγµ, for

negatively charged particles.

Note that we are not allowed to add a mass term for the photon. A term such as M2AµA
µ

added to the Lagrangian density is not invariant under gauge transformations as it would

lead to

δL =
2M2

e
Aµ(x)∂µω(x) 6= 0. (1.14)

Thus the masslessness of the photon can be understood in terms of the requirement that the

Lagrangian be gauge invariant.

1.3 Covariant Derivatives

Before leaving the abelian case, it is useful to introduce the concept of a “covariant deriva-

tive”. This is not essential for abelian gauge theories, but will be an invaluable tool when

we extend these ideas to non-abelian gauge theories.

4The determination of this constant a is the only place that a match to QED has been used. The rest

of the Lagrangian density is obtained purely from the requirement of local U(1) invariance. A different

constant would simply mean a different normalization of the photon field.



The covariant derivative Dµ is defined to be

Dµ ≡ ∂µ + i eAµ. (1.15)

It has the property that given the transformations of the fermion field eq. (1.7) and the gauge

field eq. (1.11) the quantity Dµψ transforms in the same way under gauge transformations

as ψ.

Exercise 1.3

Show that under an infinitesimal gauge transformation Dµψ transforms as

Dµψ → Dµψ + δ(Dµψ) with δ(Dµψ) = −iω(x)Dµψ.

We may thus rewrite the QED Lagrangian density as

L = −1

4
FµνF

µν + ψ (iγµDµ −m)ψ. (1.16)

Furthermore the field strength Fµν can be expressed in terms of the commutator of two

covariant derivatives, i.e.

Fµν = − i

e
[Dµ, Dν] = − i

e
[∂µ, ∂ν ] + [∂µ, Aν ] + [Aµ, ∂ν ] + i e [Aµ, Aν ]

= ∂µAν − ∂νAµ, (1.17)

where in the last line we have adopted the conventional notation again and left out the

square brackets. Notice that when using eq. (1.17) the derivatives act only on the A-field.

1.4 Gauge Fixing

The guiding principle of this chapter has been to hold onto the U(1) symmetry. This forced

us to introduce a new massless field Aµ which we could interpret as the photon. In this

subsection we will try to quantise the photon field (e.g. calculate its propagator) by naively

following the prescription used for scalars and fermions, which will not work. This should not

be surprising, because Aµ has four real components, introduced to maintain gauge symmetry.

However the physical photon has two polarisation states. This difficulty can be resolved by

“fixing the gauge” (breaking our precious gauge symmetry) in the Lagrangian in such a way

as to maintain the gauge symmetry in observables.5

5The gauge symmetry is also preserved in the Path Integral, which is a sum over all field configurations

weighted by exp{i
∫
Ld4x}. In path integral quantisation, which is an alternative to the canonical approach

used in the Field Theory lectures, Green functions are calculated from the path integral and it is unimportant

that the gauge symmetry seems broken in the Lagrangian.



In general, if the part of the action that is quadratic in some field φ(x) is given in terms of

the Fourier transform φ̃(p) by

Sφ =
∫
d4p φ̃(−p)O(p)φ̃(p), (1.18)

then the propagator for the field φ may be written as

iO−1(p). (1.19)

In the case of QED the part of the Lagrangian that is quadratic in the photon field is given

by −1/4F µνFµν = −1/2Aµ (−gµν∂σ∂σ + ∂µ∂ν)A
ν , where we have used partial integration

to obtain the second expression. In momentum space, the quadratic part of the action is

then given by

SA =
∫
d4p

1

2
Ãµ(−p)

(
−gµν p2 + pµpν

)
Ãν(p). (1.20)

Unfortunately the operator (−gµν p2 + pµpν) does not have an inverse. This can be most

easily seen by noting (−gµν p2 + pµpν) p
ν = 0. This means that the operator (−gµν p2 + pµpν)

has an eigenvector (pν) with eigenvalue 0 and is therefore not invertible. Thus it seems we

are not able to write down the propagator of the photon. We solve this problem by adding

to the Lagrangian density a gauge fixing term

− 1

2(1 − ξ)
(∂µA

µ)2 . (1.21)

With this term included (again in momentum space), SA becomes

SA =
∫
d4p

1

2
Ãµ(−p)

(
−gµν p2 − ξ

1 − ξ
pµpν

)
Ãν(p), (1.22)

and, noting the relation
(
gµν p

2 +
ξ

1 − ξ
pµpν

)(
gνρ − ξ

pνpρ

p2

)
= p2g ρ

µ , (1.23)

we see that the propagator for the photon may now be written as

−i
(
gµν − ξ

pµpν
p2

)
1

p2
. (1.24)

The special choice ξ = 0 is known as the Feynman gauge. In this gauge the propagator

eq. (1.24) is particularly simple and we will use it most of the time.

This procedure of gauge fixing seems strange: first we worked hard to get a gauge invariant

Lagrangian, and then we spoil gauge invariance by introducing a gauge fixing term.

The point is that we have to fix the gauge in order to be able to perform a calculation.

Once we have computed a physical quantity, the dependence on the gauge cancels. In other



words, it does not matter how we fix the gauge, and in particular, what value for ξ we take.

The choice ξ = 0 is simply a matter of convenience. A more careful procedure would be to

leave ξ arbitrary and check that all ξ-dependence in the final result cancels. This gives us

a strong check on the calculation, however, at the price of making the computation much

more tedious.

The procedure of fixing the gauge in order to be able to perform a calculation, even though

the final result does not depend on how we have fixed the gauge, can be understood by

the following analogy. Assume we wanted to calculate some scalar quantity (say the time

it takes for a point mass to get from one point to another) in our ordinary 3-dimensional

Euclidean space. To do so, we choose a coordinate system, perform the calculation and

get our final result. Of course, the result does not depend on how we choose the coordinate

system, but in order to be able to perform the calculation we have to fix it somehow. Picking

a coordinate system corresponds to fixing a gauge, and the independence of the result on the

coordinate system chosen corresponds to the gauge invariance of physical quantities. To take

this one step further we remark that not all quantities are independent of the coordinate

system. For example, the x-coordinate of the position of the point mass at a certain time

depends on our choice. Similarly, there are important quantities that are gauge dependent.

One example is the gauge boson propagator given in eq. (1.24). However, all measurable

quantities (observables) are gauge invariant. This is where our analogy breaks down: in

our Euclidean example there are measurable quantities that do depend on the choice of the

coordinate system.

Finally we should mention that eq. (1.21) is by far not the only way to fix the gauge but

it will be sufficient for these lectures to consider gauges defined through eq. (1.21). These

gauges are called covariant gauges.

1.5 Summary

• It is possible for the Lagrangian for a (complex) Dirac field to be invariant under

local U(1) transformations (phase rotations), in which the phase parameter depends

on space-time. In order to accomplish this we include an interaction with a vector

gauge boson which transforms under the local (gauge) transformation according to

eq. (1.11).

• This interaction is encoded by replacing the derivative ∂µ by the covariant derivative

Dµ defined by eq. (1.15). Dµ ψ transforms under gauge transformations as e−iωDµ ψ.

• The kinetic term for the gauge boson is −1
4
FµνF

µν , where Fµν is proportional to the



commutator [Dµ, Dν ] and is invariant under gauge transformations.

• The gauge boson must be massless, since a term proportional to AµA
µ is not invariant

under gauge transformations and hence not included in the Lagrangian.

• The resulting Lagrangian is identical to that of QED.

• In order to define the propagator we have to specify a certain gauge; the resulting

gauge dependence cancels in physical observables.



2 Non-Abelian Gauge Theories

In this lecture, the “gauge” concept will be constructed so that the gauge bosons have self-

interactions — as are observed among the gluons of QCD, and the W±, Z and γ of the

electroweak sector. However, the gauge bosons will still be massless. (We will see how to

give the W± and Z their observed masses in the Higgs chapter.)

2.1 Global Non-Abelian Transformations

We apply the ideas of the previous lecture to the case where the transformations do not

commute with each other, i.e. the group is “non-abelian”.

Consider n free fermion fields {ψi}, arranged in a multiplet ψ:

ψ =




ψ1

ψ2

.

.

ψn




(2.1)

for which the Lagrangian density is

L = ψ (iγµ∂µ −m)ψ,

≡ ψ
i
(iγµ∂µ −m)ψi, (2.2)

where the index i is summed from 1 to n. Eq. (2.2) is therefore a shorthand for

L = ψ
1

(iγµ∂µ −m)ψ 1 + ψ
2

(iγµ∂µ −m)ψ 2 + . . . . (2.3)

The Lagangian density (2.2) is invariant under (space-time independent) complex rotations

in ψi space:

ψ → Uψ, ψ̄ → ψ̄U†, (2.4)

where U is an n× n matrix such that

UU† = 1, det[U] = 1. (2.5)

The transformation (2.4) is called an internal symmetry, which rotates the fields (e.g. quarks

of different colour) among themselves.

The group of matrices satisfying the conditions (2.5) is called SU(n). This is the group

of special, unitary n × n matrices. Special in this context means that the determinant is



equal to 1. In order to specify an SU(n) matrix completely we need n2 − 1 real parameters.

Indeed, we need 2n2 real parameters to determine an arbitrary complex n× n matrix. But

there are n2 constraints due to the unitary requirements and one additional constraint due

to the requirement det = 1.

An arbitrary SU(n) matrix can be written as

U = e−i
∑n2

−1

a=1
ωa

T
a ≡ e−iω

a
T

a

(2.6)

where we again have adopted Einstein’s summation convention. The ωa, a ∈ {1 . . . n2 − 1},
are real parameters, and the Ta are called the generators of the group.

Exercise 2.1

Show that the unitarity of the SU(n) matrices entails hermiticity of the gen-

erators and that the requirement of det = 1 means that the generators have

to be traceless.

In the case of U(1) there was just one generator. Here we have n2 − 1 generators Ta.

There is still some freedom left of how to normalize the generators. We will adopt the usual

normalization convention

tr(TaTb) =
1

2
δab. (2.7)

The reason we can always enforce eq. (2.7) is that tr(TaTb) is a real matrix symmetric in

a↔ b. Thus it can be diagonalized. If you have problems getting on friendly terms with the

concept of generators, for the moment you can think of them as traceless, hermitian n × n

matrices. (This is, however, not the complete picture.)

The crucial new feature of the group SU(n) is that two elements of SU(n) generally do not

commute, i.e.

e−iω
a
1
Ta

e−iω
b
2
Tb 6= e−iω

b
2
Tb

e−iω
a
1
Ta

(2.8)

(compare to eq. (1.3)). To put this in a different way, the group algebra is not trivial. For

the commutator of two generators we have

[Ta,Tb] ≡ ifabcTc 6= 0 (2.9)

where we defined the structure constants of the group, fabc, and used the summation conven-

tion again. The structure constants are totally antisymmetric. This can be seen as follows:

from eq. (2.9) it is obvious that fabc = −f bac. To convince us of the antisymmetry in the

other indices as well, we note that multiplying eq. (2.9) by Td and taking the trace, using

eq. (2.7), we get 1/2 ifabd = tr(TaTbTd) − tr(TbTaTd) = tr(TaTbTd) − tr(TaTdTb).



2.2 Non-Abelian Gauge Fields

Now suppose we allow the transformation U to depend on space-time. Then the Lagrangian

density changes by δL under this “non-abelian gauge transformation”, where

δL = ψU†γµ (∂µU)ψ. (2.10)

The local gauge symmetry can be restored by introducing a covariant derivative Dµ, giving

interactions with gauge bosons, such that

DµU(x)ψ(x) = U(x)Dµψ(x). (2.11)

This is like the electromagnetic case, except that Dµ is now a matrix,

iDµ = iI∂µ − gAµ (2.12)

where Aµ = TaAaµ. It contains n2 − 1 vector (spin one) gauge bosons, Aaµ, one for each

generator of SU(n). Under a gauge transformation U , Aµ should transform as

Aµ → UAµU
† +

i

g
(∂µU)U†. (2.13)

This ensures that the Lagrangian density

L = ψ (iγµDµ −m)ψ (2.14)

is invariant under local SU(n) gauge transformations. It can be checked that eq. (2.13)

reduces to the gauge transformation of electromagnetism in the abelian limit.

Exercise 2.2

(For algebraically ambitious people): perform an infinitesimal gauge transfor-

mation on ψ, ψ̄ and D, using (2.6), and show that to linear order in the ωa,

ψ̄γµD
µψ is invariant.

Exercise 2.3

Show that in the SU(2) case, the covariant derivative is

iDµ =


 i∂µ − g

2
W 3
µ −g

2
(W 1

µ − iW 2
µ )

−g
2
(W 1

µ + iW 2
µ) i∂µ + g

2
W 3
µ


 ,

and find the usual charged current interactions for the lepton doublet

ψ =


 ν

e




by defining W± = (W 1 ∓ iW 2)/
√

2.



Exercise 2.4

Include the U(1) hypercharge interaction in the previous question; show that

the covariant derivative acting on the lepton doublet (of hypercharge Y =

−1/2) is

iDµ =


 i∂µ − g

2
W 3
µ − g′Y Bµ −g

2
(W 1

µ − iW 2
µ)

−g
2
(W 1

µ + iW 2
µ) i∂µ + g

2
W 3
µ − g′Y Bµ


 .

Define 
 Zµ

Aµ


 =


 cos θW − sin θW

sin θW cos θW




 W 3

µ

Bµ




and write the diagonal (neutral) interactions in terms of Zµ and Aµ. Extract

sin θW in terms of g and g′. (Recall that the photon does not interact with the

neutrino.)

The kinetic term for the gauge bosons is again constructed from the field strengths F a
µν which

are defined from the commutator of two covariant derivatives,

Fµν = − i

g
[Dµ,Dν ] , (2.15)

where the matrix Fµν is given by

Fµν = TaF a
µν , (2.16)

with

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g fabcAbµA

c
ν . (2.17)

Notice that Fµν is gauge variant, unlike the U(1) case. We know the transformation of D

from (2.13), so

[Dµ,Dν ] → U [Dµ,Dν ]U
†. (2.18)

The gauge invariant kinetic term for the gauge bosons is therefore

−1

2
Tr FµνF

µν = −1

4
F a
µνF

aµν , (2.19)

where the trace is in SU(n) space, and summation over the index a is implied.

In sharp contrast with the abelian case, this term does not only contain terms which are

quadratic in the derivatives of the gauge boson fields, but also the terms

g fabc(∂µA
a
ν)A

b
µA

c
ν −

1

4
g2fabcfadeAbµA

c
νA

d
µA

e
ν . (2.20)

This means that there is a very important difference between abelian and non-abelian gauge

theories. For non-abelian gauge theories the gauge bosons interact with each other via both



three-point and four-point interaction terms. The three point interaction term contains

a derivative, which means that the Feynman rule for the three-point vertex involves the

momenta of the particles going into the vertex. We shall write down the Feynman rules in

detail later.

Once again, a mass term for the gauge bosons is forbidden, since a term proportional to

AaµA
aµ is not invariant under gauge transformations.

2.3 Gauge Fixing

As in the case of QED, we need to add a gauge-fixing term in order to be able to derive a

propagator for the gauge bosons. In Feynman gauge this means adding the term −1
2
(∂µAaµ)

2

to the Lagrangian density, and the propagator (in momentum space) becomes

−i δab
gµν
p2
.

There is one unfortunate complication, which is mentioned briefly here for the sake of com-

pleteness, although one only needs to know about it for the purpose of performing higher

loop calculations with non-abelian gauge theories:

If one goes through the formalism of gauge-fixing carefully, it turns out that at higher

orders extra loop diagrams emerge. These diagrams involve additional particles that are

mathematically equivalent to interacting scalar particles and are known as a “Faddeev-Popov

ghosts”. For each gauge field there is such a ghost field. These are not to be interpreted

as physical scalar particles which could in principle be observed experimentally, but merely

as part of the gauge-fixing programme. For this reason they are referred to as “ghosts”.

Furthermore they have two peculiarities:

1. They only occur inside loops. This is because they are not really particles and cannot

occur in initial or final states, but are introduced to clean up a difficulty that arises in

the gauge-fixing mechanism.

2. They behave like fermions even though they are scalars (spin zero). This means that

we need to count a minus sign for each loop of Faddeev-Popov ghosts in any Feynman

diagram.

We shall display the Feynman rules for these ghosts later.

Thus, for example, the Feynman diagrams which contribute to the one-loop corrections to

the gauge boson propagator are



+ - -

(a) (b) (c) (d)

Diagram (a) involves the three-point interaction between the gauge bosons, diagram (b)

involves the four-point interaction between the gauge bosons, diagram (c) involves a loop of

fermions, and diagram (d) is the extra diagram involving the Faddeev-Popov ghosts. Note

that both diagrams (c) and (d) have a minus sign in front of them because both fermions

and Faddeev-Popov ghosts obey Fermi statistics.

2.4 The Lagrangian for a General Non-Abelian Gauge Theory

Let us summarize what we have found so far: Consider a gauge group G of “dimension”

N (for SU(n) : N ≡ n2 − 1), whose N generators, Ta, obey the commutation relations[
Ta,Tb

]
= ifabcT

c, where fabc are called the “structure constants” of the group.

The Lagrangian density for a gauge theory with this group, with a fermion multiplet ψi, is

given (in Feynman gauge) by

L = −1

4
F a
µνF

aµν + iψ (γµDµ −mI)ψ − 1

2
(∂µAaµ)

2 + LFP (2.21)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g fabcAbµA

c
ν , (2.22)

Dµ = ∂µI + i gTaAaµ (2.23)

and

LFP = −ξa∂µ∂µηa + g facbξ
aAcµ(∂

µηb). (2.24)

Under an infinitesimal gauge transformation the N gauge bosons Aaµ change by an amount

that contains a term which is not linear in Aaµ:

δAaµ(x) = −fabcAbµ(x)ωc(x) +
1

g
∂µω

a(x), (2.25)

whereas the field strengths F a
µν transform by a change

δF a
µν(x) = −fabc F b

µν(x)ω
c. (2.26)



In other words, they transform as the “adjoint” representation of the group (which has as

many components as there are generators). This means that the quantity F a
µνF

aµν (summa-

tion over a, µ, ν implied) is invariant under gauge transformations.

2.5 Feynman Rules

The Feynman rules for such a gauge theory can be read off directly from the Lagrangian. As

mentioned previously, the propagators are obtained by taking all terms bilinear in the field

and inverting the corresponding operator (and multiplying by i). The rules for the vertices

are obtained by simply taking (i times) the factor which multiplies the corresponding term

in the Lagrangian. The explicit rules are given in the following.

Vertices:

(Note that all momenta are defined as flowing into the vertex!)

µ a

p1

ρ c

p3

ν b

p2
−g fabc

(
gµν (p1 − p2)ρ + gνρ (p2 − p3)µ + gρµ (p3 − p1)ν

)

−i g2f eabf ecd (gµρgνσ − gµσgνρ)

−i g2f eacf ebd (gµνgρσ − gµσgνρ)

−i g2f eadf ebc (gµνgρσ − gµρgνσ)

µ
a ν

b

σ d ρ c

µ a

j i

−i g γµ (T a)ij

µ a

c b
q

g fabc qµ



Propagators:

Gluon: −i δab gµν/p2
pa

µ
b
ν

Fermion: i δij(γ
µpµ +m)/(p2 −m2)

pi j

Faddeev-Popov ghost: i δab/p
2pa b

2.6 An Example

As an example of the application of these Feynman rules, we consider the process of Compton

scattering, but this time for the scattering of non-abelian gauge bosons and fermions, rather

than photons. We need to calculate the amplitude for a gauge boson of momentum p2 and

gauge label a to scatter off a fermion of momentum p1 and gauge label i producing a fermion

of momentum p3 and gauge label j and a gauge boson of momentum p4 and gauge label

b. Note that i, j ∈ {1 . . . n} whereas a, b ∈ {1 . . . n2 − 1}. In addition to the two Feynman

diagrams one gets in the QED case there is a third diagram involving the self-interaction of

the gauge bosons.

i k jp1 p3

(p1 + p2)

p2 p4

µ νa b

i k jp1 p3

p2 p4

µ ν
a b

i jp1 p3

(p4 − p2)
ρ c

σ

p2 p4a b

µ ν

(a) (b) (c)

We will assume that the fermions are massless (i.e. that we are at sufficiently high energies

so that we may neglect their masses), and work in terms of the Mandelstam variables

s = (p1 + p2)
2 = (p3 + p4)

2,

t = (p1 − p3)
2 = (p2 − p4)

2,

u = (p1 − p4)
2 = (p2 − p3)

2.

The polarizations are accounted for by contracting the amplitude obtained for the above

diagrams with the polarization vectors ǫµ(λ2) and ǫν(λ4). Each diagram consists of two

vertices and a propagator and so their contributions can be read off from the Feynman rules.



For diagram (a) we get

ǫµ(λ2)ǫν(λ4)u
j(p3)

(
−i g γν(Tb)kj

)(
i
γ · (p1 + p2)

s

)(
−i g γµ(Ta)ik

)
ui(p1)

= −i g
2

s
ǫµ(λ2)ǫν(λ4)u (p3) (γνγ · (p1 + p2)γ

µ)
(
TbTa

)
u(p1).

For diagram (b) we get

ǫµ(λ2)ǫν(λ4)u
j(p3)

(
−i g γµ(Ta)kj

)(
i
γ · (p1 − p4)

u

)(
−i g γν(Tb)ik

)
ui(p1)

= −i g
2

u
ǫµ(λ2)ǫν(λ4)u (p3) (γνγ · (p1 − p4)γ

µ)
(
TaTb

)
u(p1).

Note that here the order of the T matrices is the other way around compared to diagram

(a).

Diagram (c) involves the three-point gauge-boson self-coupling. Since the Feynman rule for

this vertex is given with incoming momenta, it is useful to replace the outgoing gauge-boson

momentum p4 by −p4 and understand this to be an incoming momentum. Note that the

internal gauge-boson line carries momentum p4 − p2 coming into the vertex. The three

incoming momenta that are to be substituted into the Feynman rule for the vertex are

therefore p2, −p4, p4 − p2. The vertex thus becomes

−g fabc (gµν(p2 + p4)ρ + gρν(p2 − 2p4)µ + gµρ(p4 − 2p2)ν) ,

and the diagram gives

ǫµ(λ2)ǫ
ν(λ4)u

j(p3)
(
−i g γσ(Tc)ij

)
ui(p1)

(
−ig

ρσ

t

)

× (−g fabc) (gµν(p2 + p4)ρ + gρν(p2 − 2p4)µ + gµρ(p4 − 2p2)ν)

= −ig
2

t
ǫµ(λ2)ǫ

ν(λ4)u (p3)
[
Ta,Tb

]
γρu(p1)

(
gµν (p2 + p4)ρ − 2(p4)µgνρ − 2(p2)νgµρ

)
,

where in the last step we have used the commutation relation eq. (2.9) and the fact that the

polarization vectors are transverse so that p2 · ǫ(λ2) = 0 and p4 · ǫ(λ4) = 0.

Exercise 2.4

Draw all the Feynman diagrams for the tree level amplitude for two gauge

bosons with momenta p1 and p2 to scatter into two gauge bosons with momenta

q1 and q2. Label the momenta of the external gauge boson lines.



2.7 Summary

• A non-abelian gauge theory is one in which the Lagrangian is invariant under local

transformations of a non-abelian group.

• This invariance is achieved by introducing a gauge boson for each generator of the

group. The partial derivative in the Lagrangian for the fermion field is replaced by a

covariant derivative as defined in eq. (2.23).

• The gauge bosons transform under infinitesimal gauge transformations in a non-linear

way given by eq. (2.25).

• The field strengths, F a
µν , are obtained from the commutator of two covariant derivatives

and are given by eq. (2.22). They transform as the adjoint representation under gauge

transformations such that the quantity F a
µνF

aµν is invariant.

• F a
µνF

aµν contains terms which are cubic and quartic in the gauge bosons, indicating

that these gauge bosons interact with each other.

• The gauge-fixing mechanism leads to the introduction of Faddeev-Popov ghosts which

are scalar particles that occur only inside loops and obey Fermi statistics.



3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It is nothing but

a non-abelian gauge theory with the group SU(3). Thus, the quarks are described by a

field ψi where i runs from 1 to 3. The quantum number associated with the label i is called

colour. The eight gauge bosons which have to be introduced in order to preserve local gauge

invariance are the eight ‘gluons’. These are taken to be the carriers which mediate the strong

interaction in the same way that photons are the carriers which mediate the electromagnetic

interactions.

The Feynman rules for QCD are therefore simply the Feynman rules listed in the previous

lecture, with the gauge coupling constant, g, taken to be the strong coupling, gs, (more

about this later), the generators Ta taken to be the eight generators of SU(3) in the triplet

representation, and fabc, a, b, c, = 1 . . . 8 are the structure constants of SU(3) (you can look

them up in a book but normally you will not need their explicit form).

Thus we now have a quantum field theory which can be used to describe the strong interac-

tion.

3.1 Running Coupling

The coupling for the strong interaction is the QCD gauge coupling, gs. We usually work in

terms of αs defined as

αs =
g2
s

4π
. (3.1)

Since the interactions are strong, we would expect αs to be too large to perform reliable

calculations in perturbation theory. On the other hand the Feynman rules are only useful

within the context of perturbation theory.

This difficulty is resolved when we understand that ‘coupling constants’ are not constant

at all. The electromagnetic fine structure constant, α, has the value 1/137 only at energies

which are not large compared to the electron mass. At higher energies it is larger than this.

For example, at LEP energies it takes a value close to 1/129. In contrast to QED, it turns

out that in the non-abelian gauge theories of the Standard Model the weak and the strong

coupling decrease as the energy increases.

To see how this works within the context of QCD we note that when we perform higher

order perturbative calculations there are loop diagrams which have the effect of ‘dressing’

the couplings. For example, the one-loop diagrams which dress the coupling between a quark

and a gluon are:



where

= + - -

are the diagrams needed to calculate the one-loop corrections to the gluon propagator.

These diagrams contain UV divergences and need to be renormalized, e.g. by subtracting at

some renormalization scale µ. This scale then appears inside a logarithm for the renormalized

quantities. This means that if the squared momenta of all the external particles coming into

the vertex are of order Q2, where Q ≫ µ, then the above diagrams give rise to a correction

which contains a logarithm of the ratio Q2/µ2:

−α2
s β0 ln

(
Q2/µ2

)
. (3.2)

This correction is interpreted as the correction to the effective QCD coupling, αs(Q
2), at

momentum scale Q, i.e.

αs(Q
2) = αs(µ

2) − αs(µ
2)2 β0 ln

(
Q2/µ2

)
+ . . . . (3.3)

The coefficient β0 is calculated to be

β0 =
11Nc − 2nf

12 π
, (3.4)

where Nc is the number of colours (=3), nf is the number of active flavours, i.e. the number

of flavours whose mass threshold is below the momentum scale Q. Note that β0 is positive,

which means that the coefficient in front of the logarithm in eq. (3.3) is negative, so that the

effective coupling decreases as the momentum scale is increased.

A more precise analysis shows that the effective coupling obeys the differential equation

∂ αs(Q
2)

∂ ln(Q2)
= β

(
αs(Q

2)
)
, (3.5)

where β has the perturbative expansion

β(αs) = −β0 α
2
s − β1 α

3
s + O(α4

s) + . . . . (3.6)
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Figure 3.1: The running of αs(Q
2) with β taken to two loops.

In order to solve this differential equation we need a boundary value. Nowadays this is usually

taken to be the measured value of the coupling at scale of the Z boson mass, MZ = 91.19

GeV, which is measured to be

αs(M
2
Z) = 0.118 ± 0.002 . (3.7)

This is one of the free parameters of the Standard Model.6

The running of αs(Q
2) is shown in figure 3.1. We can see that for momentum scales above

about 2 GeV the coupling is less than 0.3 so that one can hope to carry out reliable pertur-

bative calculations for QCD processes with energy scales larger than this.

Gauge invariance requires that the gauge coupling for the interaction between gluons must

be exactly the same as the gauge coupling for the interaction between quarks and gluons.

The β-function could therefore have been calculated from the higher order corrections to the

three-gluon (or four-gluon) vertex and must yield the same result, despite the fact that it is

calculated from a completely different set of diagrams.

6Previously the solution to eq. (3.5) (to leading order) was written as αs(Q
2) = 4π/β0 ln(Q2/Λ2

QCD) and

the scale ΛQCD was used as the standard parameter which sets the scale for the magnitude of the strong

coupling. This turns out to be rather inconvenient since it needs to be adjusted every time higher order

corrections are taken into consideration and the number of active flavours has to be specified. The detour

via ΛQCD also introduces additional truncation errors and can complicate the error analysis.



Exercise 3.1

Draw the Feynman diagrams needed for the calculation of the one-loop cor-

rection to the triple gluon coupling (don’t forget the Faddeev-Popov ghost

loops).

Exercise 3.2

Solve equation (3.5) using β to leading order only, and calculate the value of

αs at a momentum scale of 10 GeV. Use the value at MZ given by eq. (3.7).

Calculate also the error in αs at 10 GeV.

3.2 Quark (and Gluon) Confinement

This argument can be inverted to provide an answer to the question of why we have never seen

quarks or gluons in a laboratory. Asymptotic Freedom tells us that the effective coupling be-

tween quarks becomes weaker at shorter distances (equivalent to higher energies/momentum

scales). Conversely it implies that the effective coupling grows as we go to larger distances.

Therefore, the complicated system of gluon exchanges which leads to the binding of quarks

(and antiquarks) inside hadrons leads to a stronger and stronger binding as we attempt to

pull the quarks apart. This means that we can never isolate a quark (or a gluon) at large

distances since we require more and more energy to overcome the binding as the distance

between the quarks grows. Instead, when the energy contained in the ‘string’ of bound glu-

ons and quarks becomes large enough, the colour-string breaks and more quarks are created,

leaving more colourless hadrons, but no isolated, coloured quarks.

The upshot of this is that the only free particles which can be observed at macroscopic

distances from each other are colour singlets. This mechanism is known as “quark confine-

ment”. The details of how it works are not fully understood. Nevertheless the argument

presented here is suggestive of such confinement and at the level of non-perturbative field

theory, lattice calculations have confirmed that for non-abelian gauge theories the binding

energy does indeed grow as the distance between quarks increases.7

Thus we have two different pictures of the world of strong interactions: On one hand, at suf-

ficiently short distances, which can be probed at sufficiently large energies, we can consider

quarks and gluons (partons) interacting with each other. In this regime we can perform

calculations of the scattering cross sections between quarks and gluons (called the “par-

tonic hard cross section”) in perturbation theory because the running coupling is sufficiently

7Lattice QCD simulations have also succeeded in calculating the spectrum of many observed hadrons and

also hadronic matrix elements for certain processes from ‘first principles’, i.e. without using perturbative

expansions or phenomenological models.



small. On the other hand, before we can make a direct comparison with what is observed

in accelerator experiments, we need to take into account the fact that the quarks and glu-

ons bind (hadronize) into colour singlet hadrons, and it is only these colour singlet states

that are observed directly. The mechanism for this hadronization is beyond the scope of

perturbation theory and not understood in detail. Nevertheless Monte Carlo programs have

been developed which simulate the hadronization in such a way that the results of the short-

distance perturbative calculations at the level of quarks and gluons can be confronted with

experiments measuring hadrons in a successful way.

Thus, for example, if we wish to calculate the cross section for an electron-positron annihila-

tion into three jets (at high energies), we first calculate, in perturbation theory, the process

for electron plus positron to annihilate into a virtual photon (or Z boson) which then de-

cays into a quark and antiquark, and an emitted gluon. At leading order the two Feynman

diagrams for this process are:8

e+

e−

q

q̄

γ∗ g e+

e−

q

q̄

γ∗

g

However, before we can compare the results of this perturbative calculation with experi-

mental data on three jets of observed hadrons, we need to perform a convolution of this

calculated cross section with a Monte Carlo simulation that accounts for the way in which

the final state partons (quarks and gluons) bind with other quarks and gluons to produce

observed hadrons. It is only after such a convolution has been performed that one can get

a reliable comparison of the calculated observables (like cross sections or event shapes) with

data.

Likewise, if we want to calculate scattering processes including initial state hadrons we need

to account for the probability of finding a particular quark or gluon inside an initial hadron

with a given fraction of the initial hadron’s momentum (these are called “parton distribution

functions”).

Exercise 3.3

Draw the (tree level) Feynman diagrams for the process e+e− → 4jets. Con-

sider only one photon exchange plus the QCD contributions (do not include Z

boson exchange or WW production).

8The contraction of the one loop diagram (where a gluon connects the quark and antiquark) with the

e+e− → qq̄ amplitude is of the same order αs and has to be taken into account to get an infra-red finite

result. However, it does not lead to a three-jet event (on the partonic level).



3.3 θ-Parameter of QCD

There is one more gauge invariant term that can be written down in the QCD Lagrangian:

Lθ = θ
g2
s

64π2
ǫµνρσF a

µνF
a
ρσ. (3.8)

Here ǫµνρσ is the totally antisymmetric tensor (in four dimensions). Since we should work

with the most general gauge invariant Lagrangian there is no reason to omit this term.

However, adding this term to the Lagrangian leads to a problem, called the “strong CP

problem”.

To understand the nature of the problem, we first convince ourselves that this term violates

CP . In QED we would have

ǫµνρσFµνFρσ = E · B, (3.9)

and for QCD we have a similar expression except that Ea and Ba carry a colour index —

they are known as the chromoelectric and chromomagnetic fields. Under charge conjugation

both the electric and magnetic field change sign. But under parity the electric field, which

is a proper vector, changes sign, whereas the magnetic field, which is a polar vector, does

not change sign. Thus we see that the term E · B is odd under CP .

For this reason, the parameter θ in front of this term must be exceedingly small in order not

to give rise to strong interaction contributions to CP violating quantities such as the electric

dipole moment of the neutron. The current experimental limits on this dipole moment tell

us that θ < 10−10. Thus we are tempted to think that θ is zero. Nevertheless, strictly

speaking θ is a free parameter of QCD, and is sometimes considered to be the nineteenth

free parameter of the Standard Model.

Of course we simply could set θ to zero (or a very small number) and be happy with it.9

However, whenever a free parameter is zero or extremely small, we would like to understand

the reason. The fact that we do not know why this term is absent (or so small) is the strong

CP problem.

There are several possible solutions to the strong CP problem that offer explanations as

to why this term is absent (or small). One possible solution is through imposing an ad-

ditional symmetry, leading to the postulation of a new, hypothetical, weakly interacting

particle, called the “(Peccei-Quinn) axion”. Unfortunately none of these solutions have been

confirmed yet and the problem is still unresolved.

Another question is why is this not a problem in QED? In fact a term like eq. (3.8) can also

9To be precise, setting θ → 0 in the Lagrangian would not be enough, as θ 6= 0 can also be generated

through higher order electroweak radiative corrections, requiring a fine-tuning beyond θ → 0.



be written down in QED. A thorough discussion of this point is beyond the scope of this

lecture. Suffice to say that this term can be written (in QED and QCD) as a total divergence,

so it seems that it can be eliminated from the Lagrangian altogether. However, in QCD (but

not in QED) there are non-perturbative effects from the non-trivial topological structure of

the vacuum (somewhat related to so called “instantons” you probably have heard about)

which prevent us from neglecting the θ-term.

3.4 Summary

• Quarks transform as a triplet representation of colour SU(3) (each quark can have one

of three colours).

• The eight gauge bosons of QCD are the gluons which are the carriers that mediate the

strong interaction.

• The coupling of quarks to gluons (and gluons to each other) decreases as the energy

scale increases. Therefore, at high energies one can perform reliable perturbative cal-

culations for strongly interacting processes.

• As the distance between quarks increases the binding increases, such that it is impos-

sible to isolate individual quarks or gluons. The only observable particles are colour

singlet hadrons. Perturbative calculations performed at the quark and gluon level must

be supplemented by accounting for the recombination of final state quarks and gluons

into observed hadrons as well as the probability of finding these quarks and gluons

inside the initial state hadrons (if applicable).

• QCD admits a gauge invariant strong CP violating term with a coefficient θ. This

parameter is known to be very small from limits on CP violating phenomena such as

the electric dipole moment of the neutron.



4 Spontaneous Symmetry Breaking

We have seen that in an unbroken gauge theory the gauge bosons must be massless. This is

exactly what we want for QED (massless photon) and QCD (massless gluons). However, if we

wish to extend the ideas of describing interactions by a gauge theory to the weak interactions,

the symmetry must somehow be broken since the carriers of the weak interactions (W and

Z bosons) are massive (weak interactions are very short range). We could simply break the

symmetry by hand by adding a mass term for the gauge bosons, which we know violates the

gauge symmetry. However, this would destroy renormalizability of our theory.

Renormalizable theories are preferred because they are more predictive. As discussed in

the Field Theory and QED lectures, there are divergent results (infinities) in QED and

QCD, and these are said to be renormalizable theories. So what could be worse about

a non-renormalizable theory? The critical issue is the number of divergences: few in a

renormalizable theory, and infinite in the non-renormalizable case. Associated to every

divergence is a parameter that must be extracted from data, so renormalizable theories can

make testable predictions once a few parameters are measured. For instance, in QCD, the

coupling gs has a divergence. But once αs is measured in one process, the theory can be

tested in other processes.10

In this chapter we will discuss a way to give masses to the W and Z, called “spontaneous

symmetry breaking”, which maintains the renormalizability of the theory. In this scenario

the Lagrangian maintains its symmetry under a set of local gauge transformations. On the

other hand, the lowest energy state, which we interpret as the vacuum (or ground state),

is not a singlet of the gauge symmetry. There is an infinite number of states each with the

same ground-state energy and nature chooses one of these states as the ‘true’ vacuum.

4.1 Massive Gauge Bosons and Renormalizability

In this subsection we will convince ourselves that simply adding by hand a mass term for

the gauge bosons will destroy the renormalizability of the theory. It will not be a rigorous

argument, but will illustrate the difference between introducing mass terms for the gauge

bosons in a brute force way and introducing them via spontaneous symmetry breaking.

Higher order (loop) corrections generate ultraviolet divergences. In a renormalizable theory,

10It should be noted that effective field theories, though formally not renormalizable, can nevertheless be

very valuable as they often allow for a simplified description of a more ‘complete’ or fundamental theory in

a resticted energy range. Popular examples are Chiral Perturbation Theory, Heavy Quark Effective Theory

and Non-Relativistic QCD.



these divergences can be absorbed into the parameters of the theory we started with, and

in this way can be ‘hidden’. As we go to higher orders we need to absorb more and more

terms into these parameters, but there are only as many divergent quantities as there are

parameters. So, for instance, in QED the Lagrangian we start with contains the fermion

field, the gauge boson field, and interactions whose strength is controlled by e and m. Being

a renormalizable theory, all divergences of diagrams can be absorbed into these quantities

(irrespective of the number of loops or legs), and once e and m are measured, all other

observables (cross sections, g − 2, etc.) can be predicted.

In order to ensure that this programme can be carried out there have to be restrictions on

the allowed interaction terms. Furthermore all the propagators have to decrease like 1/p2

as the momentum p → ∞. Note that this is how the massless gauge-boson propagator

eq. (1.24) behaves. If these conditions are not fulfilled, then the theory generates more and

more divergent terms as one calculates to higher orders, and it is not possible to absorb

these divergences into the parameters of the theory. Such theories are said to be “non-

renormalizable”.

Now we can convince ourselves that simply adding a mass term M2 AµA
µ to the Lagrangian

given in eq. (2.21) will lead to a non-renormalizable theory. To start with we note that

such a term will modify the propagator. Collecting all terms bilinear in the gauge fields in

momentum space we get (in Feynman gauge)

1

2
Aµ

(
−gµν(p2 −M2) + pµpν

)
Aν . (4.1)

We have to invert this operator to get the propagator which now takes the form

i

p2 −M2

(
−gµν +

pµpν

M2

)
. (4.2)

Note that this propagator, eq. (4.2), has a much worse ultraviolet behavior in that it goes

to a constant for p → ∞. Thus, it is clear that the ultraviolet properties of a theory with

a propagator as given in eq. (4.2) are worse than for a theory with a propagator as given

in eq. (1.24). According to our discussion at the beginning of this subsection we conclude

that without the explicit mass term M2 AµA
µ the theory is renormalizable, whereas with

this term it is not. In fact, it is precisely the gauge symmetry that ensures renormalizability.

Breaking this symmetry results in the loss of renormalizability.

The aim of spontaneous symmetry breaking is to break the gauge symmetry in a more subtle

way, such that we can still give the gauge bosons a mass but retain renormalizability.



4.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a phenomenon that is by far not restricted to gauge

symmetries. It is a subtle way to break a symmetry by still requiring that the Lagrangian

remains invariant under the symmetry transformation. However, the ground state of the

symmetry is not invariant, i.e. not a singlet under a symmetry transformation.

In order to illustrate the idea of spontaneous symmetry breaking, consider a pen that is

completely symmetric with respect to rotations around its axis. If we balance this pen on

its tip on a table, and start to press on it with a force precisely along the axis we have a

perfectly symmetric situation. This corresponds to a Lagrangian which is symmetric (under

rotations around the axis of the pen in this case). However, if we increase the force, at some

point the pen will bend (and eventually break). The question then is in which direction will

it bend. Of course we do not know, since all directions are equal. But the pen will pick

one and by doing so it will break the rotational symmetry. This is spontaneous symmetry

breaking.

A better example can be given by looking at a point mass in a potential

V (~r) = µ2~r · ~r + λ(~r · ~r)2. (4.3)

This potential is symmetric under rotations and we assume λ > 0 (otherwise there would

be no stable ground state). For µ2 > 0 the potential has a minimum at ~r = 0, thus the

point mass will simply fall to this point. The situation is more interesting if µ2 < 0. For

two dimensions the potential is shown in Fig. 4.1. If the point mass sits at ~r = 0 the

system is not in the ground state but the situation is completely symmetric. In order to

reach the ground state, the symmetry has to be broken, i.e. if the point mass wants to roll

down, it has to decide in which direction. Any direction is equally good, but one has to be

picked. This is exactly what spontaneous symmetry breaking means. The Lagrangian (here

the potential) is symmetric (here under rotations around the z-axis), but the ground state

(here the position of the point mass once it rolled down) is not. Let us formulate this in

a slightly more mathematical way for gauge symmetries. We denote the ground state by

|0〉. A spontaneously broken gauge theory is a theory whose Lagrangian is invariant under

gauge transformations, which is exactly what we have done in chapters 1 and 2. The new

feature in a spontaneously broken theory is that the ground state is not invariant under

gauge transformations. This means

e−iω
aTa |0〉 6= |0〉 (4.4)

which entails

Ta |0〉 6= 0 for some a. (4.5)
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Figure 4.1: A potential that leads to spontaneous symmetry breaking.

Eq. (4.5) follows from eq. (4.4) upon expansion in ωa. Thus, the theory is spontaneously

broken if there exists at least one generator that does not annihilate the vacuum.

In the next section we will explore the concept of spontaneous symmetry breaking in the

context of gauge symmetries in more detail, and we will see that, indeed, this way of breaking

the gauge symmetry has all the desired features.

4.3 The Abelian Higgs Model

For simplicity, we will start by spontaneously breaking the U(1) gauge symmetry in a theory

of one complex scalar field. In the Standard Model, it will be a non-abelian gauge theory

that is spontaneously broken, but all the important ideas can simply be translated from the

U(1) case considered here.

The Lagrangian density for a gauged complex scalar field, with a mass term and a quartic

self-interaction, may be written as

L = (DµΦ)∗DµΦ − 1

4
FµνF

µν − V (Φ), (4.6)

where the potential V (Φ), is given by

V (Φ) = µ2Φ∗Φ + λ |Φ∗Φ|2 , (4.7)



and the covariant derivative Dµ and the field-strength tensor Fµν are given in eqs. (1.15) and

(1.12) respectively. This Lagrangian is invariant under U(1) gauge transformations

Φ → e−iω(x)Φ. (4.8)

Provided µ2 is positive this potential has a minimum at Φ = 0. We call the Φ = 0 state

the vacuum and expand Φ in terms of creation and annihilation operators that populate the

higher energy states. In terms of a quantum field theory, where Φ is an operator, the precise

statement is that the operator Φ has zero vacuum expectation value, i.e. 〈0|Φ|0〉 = 0.

Now suppose we reverse the sign of µ2, so that the potential becomes

V (Φ) = −µ2Φ∗Φ + λ |Φ∗Φ|2 , (4.9)

with µ2 > 0. We see that this potential no longer has a minimum at Φ = 0, but a (local)

maximum. The minimum occurs at

Φ = eiθ
√
µ2

2λ
≡ eiθ

v√
2
, (4.10)

where θ can take any value from 0 to 2π. There is an infinite number of states each with

the same lowest energy, i.e. we have a degenerate vacuum. The symmetry breaking occurs

in the choice made for the value of θ which represents the true vacuum. For convenience we

shall choose θ = 0 to be our vacuum. Such a choice constitutes a spontaneous breaking of

the U(1) invariance, since a U(1) transformation takes us to a different lowest energy state.

In other words the vacuum breaks U(1) invariance. In quantum field theory we say that the

field Φ has a non-zero vacuum expectation value

〈Φ〉 =
v√
2
. (4.11)

But this means that there are ‘excitations’ with zero energy, that take us from the vacuum to

one of the other states with the same energy. The only particles which can have zero energy

are massless particles (with zero momentum). We therefore expect a massless particle in

such a theory.

To see that we do indeed get a massless particle, let us expand Φ around its vacuum expec-

tation value,

Φ =
eiφ/v√

2

(
µ√
λ

+H

)
≃ 1√

2

(
µ√
λ

+H + iφ

)
. (4.12)

The fields H and φ have zero vacuum expectation values and it is these fields that are

expanded in terms of creation and annihilation operators of the particles that populate the

excited states. Of course, it is the H-field that corresponds to the Higgs field.



We now want to write the Lagrangian in terms of the H and φ fields. In order to get the

potential we insert eq. (4.12) into eq. (4.9) and find

V = µ2H2 + µ
√
λ
(
H3 + φ2H

)
+
λ

4

(
H4 + φ4 + 2H2 φ2

)
+
µ4

4λ
. (4.13)

Note that in eq. (4.13) there is a mass term for the H-field, µ2H2 ≡ MH/2H
2, where we

have defined11

MH =
√

2µ. (4.14)

However, there is no mass term for the field φ. Thus φ is a field for a massless particle called

the “Goldstone boson”. We will look at this issue in a more general way in section 4.4. Next

let us consider the kinetic term. We plug eq. (4.12) into (DµΦ)∗DµΦ and get

(DµΦ)∗DµΦ =
1

2
∂µH∂

µH +
1

2
∂µφ∂

µφ+
1

2
g2v2AµA

µ +
1

2
g2AµA

µ(H2 + φ2)

− gAµ (φ∂µH −H∂µφ) + gvAµ∂
µφ+ g2vAµA

µH. (4.15)

There are several important features in eq. (4.15). Firstly, the gauge boson has acquired a

mass term 1/2g2v2AµA
µ ≡ 1/2M2

AAµA
µ, where we have defined

MA = gv. (4.16)

Secondly, there is a coupling of the gauge field to the H-field,

g2vAµA
µH = gMAAµA

µH. (4.17)

It is important to remember that this coupling is proportional to the mass of the gauge

boson. Finally, there is also the bilinear term g v Aµ∂µφ, which after integrating by parts

(for the action S) may be written as −MA φ ∂µA
µ. This mixes the Goldstone boson, φ, with

the longitudinal component of the gauge boson, with strength MA (when the gauge-boson

field Aµ is separated into its transverse and longitudinal components, Aµ = ALµ + ATµ ,

where ∂µATµ = 0). Later on, we will use the gauge freedom to get rid of this mixing term.

4.4 Goldstone Bosons

In the previous subsection we have seen that there is a massless boson, called the Goldstone

boson, associated with the flat direction in the potential. Goldstone’s theorem describes the

appearance of massless bosons when a global (not gauge) symmetry is spontaneously broken.

11Note that for a real field φ representing a particle of mass m the mass term is 1
2
m2φ2, whereas for a

complex field the mass term is m2φ†φ.



Suppose we have a theory whose Lagrangian is invariant under a symmetry group G with

N generators Ta and the symmetry group of the vacuum forms a subgroup H of G, with

m generators. This means that the vacuum state is still invariant under transformations

generated by the m generators of H, but not the remaining N −m generators of the original

symmetry group G. Thus we have

Ta|0〉 = 0 a = 1 . . .m,

Ta|0〉 6= 0 a = m+ 1 . . .N. (4.18)

Goldstone’s theorem states that there will be N −m massless particles (one for each broken

generator of the group). The case considered in this section is special in that there is only

one generator of the symmetry group (i.e. N = 1) which is broken by the vacuum. Thus,

there is no generator that leaves the vacuum invariant (i.e. m = 0) and we get N −m = 1

Goldstone boson.

Like all good general theorems, Goldstone’s theorem has a loophole, which arises when one

considers a gauge theory, i.e. when one allows the original symmetry transformations to

be local. In a spontaneously broken gauge theory, the choice of which vacuum is the true

vacuum is equivalent to choosing a gauge, which is necessary in order to be able to quantize

the theory. What this means is that the Goldstone bosons, which can, in principle, transform

the vacuum into any of the states degenerate with the vacuum, now affect transitions into

states which are not consistent with the original gauge choice. This means that the Goldstone

bosons are “unphysical” and are often called “Goldstone ghosts”.

On the other hand the quantum degrees of freedom associated with the Goldstone bosons

are certainly there ab initio (before a choice of gauge is made). What happens to them? A

massless vector boson has only two degrees of freedom (the two directions of polarization

of a photon), whereas a massive vector (spin-one) particle has three possible values for

the helicity of the particle. In a spontaneously broken gauge theory, the Goldstone boson

associated with each broken generator provides the third degree of freedom for the gauge

bosons. This means that the gauge bosons become massive. The Goldstone boson is said to

be “eaten” by the gauge boson. This is related to the mixing term between AµL and φ of the

previous subsection. Thus, in our abelian model, the two degrees of freedom of the complex

field Φ turn out to be the Higgs field and the longitudinal component of the (now massive)

gauge boson. There is no physical, massless particle associated with the degree of freedom

φ present in Φ.



4.5 The Unitary Gauge

As mentioned above, we want to use the gauge freedom to choose a gauge such that there are

no mixing terms between the longitudinal component of the gauge field and the Goldstone

boson. Recall

Φ =
1√
2

(v +H) eiφ/v =
1√
2

(
µ√
λ

+H + iφ+ . . .

)
, (4.19)

where the dots stand for nonlinear terms in φ. Next we make a gauge transformation (see

eq. (1.2))

Φ → Φ′ = e−iφ/v Φ. (4.20)

In other words, we fix the gauge such that the imaginary part of Φ vanishes. Under the

gauge transformation eq. (4.20) the gauge field transforms according to (see eq. (1.11))

Aµ → A′
µ = Aµ +

1

gv
[∂µφ]. (4.21)

It is in fact the superposition of Aµ and φ which make up the physical field. Note that

the change from Aµ to A′
µ made in eq. (4.21) affects only the longitudinal component. If

we now express the Lagrangian in terms of Φ′ and A′
µ there will be no mixing term. Even

better, the φ field vanishes altogether! This can easily be seen by noting that under a gauge

transformation the covariant derivative DµΦ transforms in the same way as Φ, thus

DµΦ → (DµΦ)′ = e−iφ/vDµΦ = e−iφ/v
1√
2

(
∂µH + igA′

µ(v +H)
)
, (4.22)

and (DµΦ)′∗(DµΦ)′ is independent of φ. Performing the algebra (and dropping the ′ for the

A-field) we get the Lagrangian in the unitary gauge

L =
1

2
∂µH∂

µH +
M2

A

2
AµA

µ − 1

4
FµνF

µν − M2
H

2
H2

+ gMAAµA
µH +

g2

2
AµA

µH2 − λ

4
H4 −

√
λ

2
MHH

3, (4.23)

with MA and MH as defined in eqs. (4.16) and (4.14), respectively. All the terms quadratic

in Aµ may be written (in momentum space) as

Aµ(−p)
(
−gµν p2 + pµpν + gµνM2

A

)
Aν(p). (4.24)

The gauge boson propagator is the inverse of the coefficient of Aµ(−p)Aν(p), which is

−i
(
gµν −

pµpν
M2

A

)
1

(p2 −M2
A)
. (4.25)

This is the usual expression for the propagator of a massive spin-one particle, eq. (4.2).

The only other remaining particle is the scalar, H , with mass mH =
√

2µ, which is the



Higgs boson. This is a physical particle, which interacts with the gauge boson and also has

cubic and quartic self-interactions. The Lagrangian given in eq. (4.23) leads to the following

vertices and Feynman rules:

µ

ν

µ

ν

2 i e2gµν

2 i eMAgµν

6 i λ

6 imH

√
2λ

The advantage of the unitary gauge is that no unphysical particles appear, i.e. the φ-field

has completely disappeared. The disadvantage is that the propagator of the gauge field,

eq. (4.25), behaves as p0 for p → ∞. As discussed in section 4.1 this seems to indicate

that the theory is non-renormalizable. It seems that we have not gained anything at all

by breaking the theory spontaneously rather than by simply adding a mass term by hand.

Fortunately this is not true. In order to see that the theory is still renormalizable, in spite

of eq. (4.25), it is very useful to consider a different type of gauges, namely the Rξ gauges

discussed in the next subsection.

4.6 Rξ Gauges (Feynman Gauge)

The class of Rξ gauges is a more conventional way to fix the gauge. Recall that in QED we

fixed the gauge by adding a term, eq. (1.21), in the Lagrangian. This is exactly what we do

here. The gauge fixing term we are adding to the Lagrangian density eq. (4.6) is

LR ≡ − 1

2(1 − ξ)
(∂µA

µ − (1 − ξ)MAφ)2

= − 1

2(1 − ξ)
∂µA

µ∂νA
ν +MAφ∂µA

µ − 1 − ξ

2
M2

Aφ
2. (4.26)



Again, the special value ξ = 0 corresponds to the Feynman gauge. The second term in

eq. (4.26) cancels precisely the mixing term in eq. (4.15). Thus, we have achieved our goal.

Note however, that in this case, contrary to the unitary gauge, the unphysical φ-field does

not disappear. The first term in eq. (4.26) is bilinear in the gauge field, thus it contributes

to the gauge-boson propagator. The terms bilinear in the A-field are

−1

2
Aµ(−p)

(
−gµν(p2 −M2

a ) + pµpν −
pµpν
1 − ξ

)
Aν(p) (4.27)

which leads to the gauge boson propagator

−i
(p2 −M2

A)

(
gµν − ξ

pµpν
p2 − (1 − ξ)M2

A

)
. (4.28)

In the Feynman gauge, the propagator becomes particularly simple. The crucial feature of

eq. (4.28), however, is that this propagator behaves as p−2 for p → ∞. Thus, this class

of gauges is manifestly renormalizable. There is, however, a price to pay: The Goldstone

boson is still present. It has acquired a mass, MA, from the gauge fixing term, and it has

interactions with the gauge boson, with the Higgs scalar and with itself. Furthermore, for the

purposes of higher order corrections in non-Abelain theories, we need to introduce Faddeev-

Popov ghosts which interact with the gauge bosons, the Higgs scalar and the Goldstone

bosons.

Let us stress that there is no contradiction at all between the apparent non-renormalizability

of the theory in the unitary gauge and the manifest renormalizability in the Rξ gauge. Since

physical quantities are gauge invariant, any physical quantity can be calculated in a gauge

where renormalizability is manifest. As mentioned above, the price we pay for this is that

there are more particles and many more interactions, leading to a plethora of Feynman

diagrams. We therefore only work in such gauges if we want to compute higher order

corrections. For the rest of these lectures we shall confine ourselves to tree-level calculations

and work solely in the unitary gauge.

Nevertheless, one cannot over-stress the fact that it is only when the gauge bosons ac-

quire masses through the Higgs mechanism that we have a renormalizable theory. It is this

mechanism that makes it possible to write down a consistent Quantum Field Theory which

describes the weak interactions.

4.7 Summary

• In the case of a gauge theory the Goldstone bosons provide the longitudinal component

of the gauge bosons, which therefore acquire a mass. The mass is proportional to the



magnitude of the vacuum expectation value and the gauge coupling constant. The

Goldstone bosons themselves are unphysical.

• It is possible to work in the unitary gauge where the Goldstone boson fields are set to

zero.

• When gauge bosons acquire masses by this (Higgs) mechanism, renormalizability is

maintained. This can be seen explicitly if one works in a Rξ gauge, in which the gauge

boson propagator decreases like 1/p2 as p → ∞. This is a necessary condition for

renormalizability. If one does work in such a gauge, however, one needs to work with

Goldstone boson fields, even though the Goldstone bosons are unphysical. The number

of interactions and the number of Feynman graphs required for the calculation of some

processes is then greatly increased.



5 The Standard Model with one Family

To write down the Lagrangian of a theory, one first needs to choose the symmetries (gauge

and global) and the particle content, and then write down every allowed renormalizable

interaction. In this section we shall use this recipe to construct the Standard Model with

one family. The Lagrangian should contain pieces

L(SM,1) = Lgauge bosons + Lfermion masses + LfermionKT + LHiggs. (5.1)

The terms are written out in eqns. (5.15), (5.29), (5.30) and (5.55).

5.1 Left- and Right- Handed Fermions

The weak interactions are known to violate parity. Parity non-invariant interactions for

fermions can be constructed by giving different interactions to the “left-handed” and “right-

handed” components defined in eq. (5.4). Thus, in writing down the Standard Model, we

will treat the left-handed and right-handed parts separately.

A Dirac field, ψ, representing a fermion, can be expressed as the sum of a left-handed part,

ψL, and a right-handed part, ψR,

ψ = ψL + ψR, (5.2)

where

ψL = PL ψ with PL =
(1 − γ5)

2
, (5.3)

ψR = PR ψ with PR =
(1 + γ5)

2
. (5.4)

PL and PR are projection operators, i.e.

PL PL = PL, PR PR = PR and PL PR = 0 = PR PL. (5.5)

They project out the left-handed (negative) and right-handed (positive) chirality states of

the fermion, respectively. This is the definition of chirality, which is a property of fermion

fields, but not a physical observable.

The kinetic term of the Dirac Lagrangian and the interaction term of a fermion with a vector

field can also be written as a sum of two terms, each involving only one chirality

ψ γµ∂µψ = ψL γ
µ∂µψL + ψR γ

µ∂µψR, (5.6)

ψ γµAµψ = ψL γ
µAµψL + ψR γ

µAµψR. (5.7)



On the other hand, a mass term mixes the two chiralities:

mψψ = mψL ψR +mψR ψL. (5.8)

Exercise 5.1

Use (γ5)
2 = 1 to verify eq. (5.5) and ψ = ψ†γ0, γ5 † = γ5 as well as γ5γµ =

−γµγ5 to verify eq. (5.7).

In the limit where the fermions are massless (or sufficiently relativistic), chirality becomes

helicity, which is the projection of the spin on the direction of motion and which is a physical

observable. Thus, if the fermions are massless, we can treat the left-handed and right-handed

chiralities as separate particles of conserved helicity. We can understand this physically from

the following simple consideration. If a fermion is massive and is moving in the positive z

direction, along which its spin is having a positive component so that the helicity is positive

in this frame, one can always boost into a frame in which the fermion is moving in the

negative z direction, but with this spin component unchanged. In the new frame the helicity

will hence be negative. On the other hand, if the particle is massless and travels with the

speed of light, no such boost is possible, and in that case helicity/chirality is a good quantum

number.

Exercise 5.2

For a massless spinor

u(p) =
1√
E


 E χ

~σ · ~p χ


 ,

where χ is a two-component spinor, show that

(1 ± γ5)u(p)

are eigenstates of ~σ · ~p/E with eigenvalues ±1, respectively. Take

γ5 =


 0 1

1 0


 ,

and in 4 × 4 matrix notation ~σ · ~p means


 ~σ · ~p 0

0 ~σ · ~p


 .



5.2 Symmetries and Particle Content

We have made all the preparations to write down a gauge invariant Lagrangian. We now

only have to pick the gauge group and the matter content of the theory. It should be noticed

that there are no theoretical reasons to pick a certain group or certain matter content. To

match experimental observations we pick the gauge group for the Standard Model to be

U(1)Y × SU(2) × SU(3). (5.9)

To indicate that the abelian U(1) group is not the gauge group of QED but of hypercharge

a subscript Y has been added. The corresponding coupling and gauge boson is denoted by

g′ and Bµ respectively.

The SU(2) group has three generators (Ta = σa/2), the coupling is denoted by g and the

three gauge bosons are denoted by W 1
µ ,W

2
µ ,W

3
µ . None of these gauge bosons (and neither

Bµ) are physical particles. As we will see, linear combinations of these gauge bosons will

make up the photon as well as the W± and the Z bosons.

Finally, the SU(3) is the group of the strong interaction. The corresponding eight gauge

bosons are the gluons. In this section we will concentrate on the other two groups, with

one generation of fermions. The strong interaction is dealt with in section 3, and extra

generations are introduced in the next chapter.

As matter content for the first family, we have

qL ≡

 uL

dL


 ; uR; dR; ℓL ≡


 νL

eL


 ; eR; {νR!!}. (5.10)

Note that a right-handed neutrino νR has appeared. It is a gauge singlet (no strong interac-

tion, no weak interactions, no electric charge), so is unneccessary in a model with massless

neutrinos. However, neutrinos are now known to have small masses, which can be described

by adding the right-handed field νR. Neutrino masses will be discussed further in chapter 7.

Note also that the left- and right-handed fermion components have been given different weak

interactions. The Standard Model is constructed this way, because the weak interactions are

known to violate parity. The left-handed components form doublets under SU(2) whereas the

right-handed components are singlets. This means that under SU(2) gauge transformations

we have

eR → e′R = eR, (5.11)

ℓL → ℓ′L = e−iω
a
T

a

ℓL. (5.12)



Thus, the SU(2) singlets eR, νR, uR and dR are invariant under SU(2) transformations and

do not couple to the corresponding gauge bosons W 1
µ ,W

2
µ ,W

3
µ .

Since this separation of the electron into its left- and right-handed helicity only makes sense

for a massless electron we also need to assume that the electron is massless in the exact

SU(2) limit and that the mass for the electron arises as a result of spontaneous symmetry

breaking in a similar way as the masses for the gauge bosons arise. We will come back to

this later.

Under U(1)Y gauge transformations the matter fields transform as

ψ → ψ′ = e−iωY (ψ)ψ (5.13)

where Y is the hypercharge of the particle under consideration. It is chosen to give the

observed electric charge of the particles. The explicit values for the hypercharges of the

particles listed in eq. (5.10) are as follows:

Y (ℓL) = −1

2
, Y (eR) = −1, Y (νR) = 0, Y (qL) =

1

6
, Y (uR) =

2

3
, Y (dR) = −1

3
. (5.14)

Under SU(3) the lepton fields ℓL, eR, νR are singlets, i.e. they do not transform at all. This

means that they do not couple to the gluons. The quarks on the other hand form triplets

under SU(3). The strong interaction does not distinguish between left- and right-handed

particles.

We have now listed all fermions that belong to the first family, together with their transfor-

mation properties under the various gauge transformations. However, since we ultimately

want massive weak gauge bosons, we will have to break the U(1)Y × SU(2) gauge group

spontaneously, by introducing some type of Higgs scalar. The transformation properties of

this scalar will be deduced in the discussion of fermion masses.

5.3 Kinetic Terms for the Gauge Bosons

The gauge kinetic terms for abelian and non-abelian theories were presented in the first two

lectures. From the general expression of eq. (2.21), we extract for the SM gauge bosons:

L = −1

4
BµνB

µν − 1

4
F a
µνF

aµν − 1

4
FA
µνF

Aµν + Lgauge−fixing + LFP ghosts. (5.15)

Here Bµν = ∂µBν − ∂νBµ is the hypercharge field strength, the second term contains the

SU(2) field strength, so a runs from one to three (over the three vector bosons of SU(2)),

and the third term is the gluon kinetic term, so A = 1 . . . 8. To do an explicit perturbative

calculation, additional gauge fixing terms, and Fadeev-Popov ghosts, must be included. The

form of these terms depends on the choice of gauge.



5.4 Fermion Masses and Yukawa Couplings

We cannot have an explicit mass term for the quarks or electrons, since a mass term mixes

left-handed and right-handed fermions and we have assigned these to different multiplets of

weak SU(2). However, if an SU(2) doublet Higgs is introduced, there is a gauge invariant

interaction that will look like a mass when the Higgs gets a vacuum expectation value (“vev”).

Such an interaction is called a ‘Yukawa interaction’ and is written as

LYukawa = −Ye lL
i
ΦieR + h.c. , (5.16)

where h.c. means ‘hermitian conjugate’. Note that the Higgs doublet must have Y = 1/2 to

ensure that this term has zero weak hypercharge.

Recalling eq. (5.19) we introduce a scalar “Higgs” field, which is a doublet under SU(2),

singlet under SU(3) (no colour), and has a scalar potential as given in eq. (4.9), i.e.

V (Φ) = −µ2Φ∗Φ + λ |Φ∗Φ|2 . (5.17)

This potential has a minimum at Φ∗Φ = 1
2
µ2/λ, so some component of the Higgs doublet

should get a vev. In the unitary gauge, this vev can be written as

〈Φ〉 =
1√
2


 0

v


 (5.18)

with v = µ/
√
λ.

Recall from the previous chapter that Φ can be written as its “radial” degree of freedom

times an exponential containing the broken generators of the gauge symmetry:

Φ =
ei(ωaT

a−ω3Y)

√
2


 0

v + H


 . (5.19)

The unitary gauge choice consists of absorbing this exponential with a gauge transformation,

so that in the unitary gauge eq. (5.16) is

LYukawa = − Ye√
2

(
νL eL

)

 0

v + H


 eR + h.c. . (5.20)

The part proportional to the vev is simply

− Ye v√
2

(eL eR + eR eL) =
Ye v√

2
e e , (5.21)



and we see that the electron has acquired a mass which is proportional to the vev of the

scalar field. This immediately gives us a relation for the Yukawa coupling in terms of the

electron mass, me, and the W mass, MW :

Ye = g
me√
2MW

. (5.22)

Thus, as for the gauge bosons, the strength of the coupling of the Higgs to fermions is

proportional to the mass of the fermions.

The quarks also acquire a mass through the spontaneous symmetry breaking mechanism,

via their Yukawa coupling with the scalars. The interaction term

−Yd qL
i Φi dR + h.c. (5.23)

gives a mass to the d quark when we replace Φi by its vev. This mass md is given by

md =
Yd√

2
v =

√
2
YdMW

g
. (5.24)

Since the vev is in the lower component of the Higgs doublet, we must do a little more work

to obtain a mass for the upper element u of the quark doublet. In the case of SU(2) there

is a second way in which we can construct an invariant for the Yukawa interaction:

−Yu ǫij qL
i Φ∗ juR + h.c. (i, j = 1, 2), (5.25)

where ǫij is the two-dimensional antisymmetric tensor. Note that

Φc = ǫijΦ
j∗ =


 0 1

−1 0




 Φ∗

+

Φ∗
0


 (5.26)

has Y = −1/2, as required by the U(1) symmetry. This term does indeed give a mass mu

to the u quark, where

mu =
Yu√

2
v =

√
2
YuMW

g
. (5.27)

So the SM Higgs scalar couples to both the u and d quark, with interaction terms

− g
mu

2MW
uH u − g

md

2MW
dH d . (5.28)

The terms in the Lagrangian that give masses to the first generation quarks and charged

leptons are

Lfermion masses = −Ye lL
i
ΦieR − Yd qL

i Φi dR − Yu ǫij qL
i Φ∗ juR + h.c. . (5.29)

We could also have included a Yukawa mass term for the neutrinos: −Yν ǫij ℓL
i
Φ∗ jνR+ h.c.

However, neutrino masses do not neccessarily arise from a Yukawa interaction (this will be

discussed in chapter 7).



5.5 Kinetic Terms for Fermions

The fermionic kinetic terms should be familiar from chapter 2:

LfermionKT = i ℓL
T
γµDµ ℓL + i eR γ

µDµ eR + i νR γ
µ∂µ νR

+i qL
T γµDµ qL + i dR γ

µDµ dR + i uR γ
µ∂µ uR (5.30)

where the covariant derivatives include the hypercharge, SU(2) and SU(3) gauge bosons as

required. For instance:

Dµ = ∂µ + igTaW a
µ + ig′Y (ℓL)Bµ for ℓL , (5.31)

Dµ = ∂µ + ig′Y (eR)Bµ for eR , (5.32)

Dµ = ∂µ + igsTs
aGa

µ + ig′Y (dR)Bµ for dR , (5.33)

where the strong coupling (gs), the eight generators of SU(3) (Ts
a) and the corresponding

gluon fields (Ga
µ) have been introduced, and Y (f) is the hypercharge of fermion f .

This gives the following interaction terms between the leptons and the gauge bosons:

− g

2


 νL

eL



T

γµ




 W 0

µ

√
2W−

µ√
2W+

µ −W 0
µ


− tan θWBµ




 νL

eL


 − i g tan θW eR γ

µBµeR ,

(5.34)

where we have used

Zµ ≡ cos θW W 3
µ − sin θWBµ , (5.35)

Aµ ≡ cos θW Bµ + sin θWW
3
µ (5.36)

to replace Bµ and W 3
µ by the physical particles Zµ and Aµ. (In the exercises of chapter 2

these definitions followed from requiring that the photon does not interact with the neutrino.

In section 5.6 we will see that the photon is also massless).

Writing out the projection operators for left- and right-handed fermions, eqs. (5.3) and (5.4),

we obtain the following interactions:

1. A coupling of the charged vector bosons W± which mediate transitions between neu-

trinos and electrons (or u and d quarks) with an interaction term

− g

2
√

2
ν γµ

(
1 − γ5

)
eW−

µ − g

2
√

2
u γµ

(
1 − γ5

)
dW−

µ + h.c. (5.37)

(h.c. means ‘hermitian conjugate’ and gives the interaction involving an emitted W+
µ

where the incoming particle is a neutrino (or u) and the outgoing particle is an electron

(or d).)



2. The usual coupling of the photon with the charged fermions is (using, for instance, the

relation eq. (5.54)):

g sin θW e γµ eAµ −
2

3
g sin θW u γµ uAµ +

1

3
g sin θW d γµ dAµ . (5.38)

Note that the left- and right-handed fermions have exactly the same coupling to the

photon so that the electromagnetic coupling turns out to be purely vector (i.e. no γ5

term).

3. The coupling of neutrinos to the neutral weak gauge boson Zµ:

− g

4 cos θW
ν γµ

(
1 − γ5

)
ν Zµ . (5.39)

4. The coupling of both the left- and right-handed electron to the Z:

g

4 cos θW
e
(
γµ
(
1 − γ5

)
− 4 sin2 θWγ

µ
)
eZµ . (5.40)

5. The coupling of the quarks to the Z can be written in the general form

− g

2 cos θW
qi
(
T 3
i γ

µ
(
1 − γ5

)
− 2Qi sin

2 θWγ
µ
)
qi Zµ , (5.41)

where quark i has the third component of weak isospin T 3
i and electric charge Qi.

From these terms in the Lagrangian we can directly read off the Feynman rules for the three-

point vertices with two fermions and one weak gauge boson. Then we can use these vertices

to calculate weak interactions of the quarks and leptons. This allows us, for example, to

calculate the total decay width of the Z or W boson, by calculating the decay width into

all possible quarks and leptons. However, quarks are not free particles, so for exclusive

processes, in which we trigger on known initial or final state hadrons, information is needed

about the probability to find a quark with given properties inside an initial hadron or the

probability that a quark with given properties will decay (“fragment”) into a final state

hadron.



Exercise 5.3

The decay rate for the Z into a fermion-antifermion pair, Z → f f̄ , is

Γ =
1

2MZ

∫
dLIPS |M|2 =

1

64 π2MZ

∫
dΩ |M|2,

where dLIPS stands for the Lorentz invariant phase space measure for the two

final-state fermions, and
∫
dΩ is the integral over the solid angle (of one final-

state particle).

Write the general interaction term for the coupling of the Z boson to a fermion

as

− g

2 cos θW
γµ
(
vf − af γ

5
)
.

Show that the squared matrix element, summed over the spins of the (outgoing)

fermions and averaged over the spin of the (incoming) Z boson is

|M|2 = − 1

12
gµν

g2

cos2 θW

(
(vf)

2 + (af)
2
)

Tr (γµγ · k1γ
νγ · k2) ,

where k1 and k2 are the momenta of the outgoing fermions and the gauge

polarization sum is ∑

λ

ǫ(λ)∗
µ ǫ(λ)

ν = −gµν +
qµ qν
M2

Z

(q = k1 + k2 is the initial momentum of the Z boson). Hence show that

Γ =
1

48 π

g2

cos2 θW

(
(vf)

2 + (af )
2
)
MZ .

Neglect the masses of the fermions in comparison to the Z mass.

Exercise 5.4

The Z boson can decay leptonically into a pair of neutrinos or charged leptons

of all three generations and hadronically into u quarks, d quarks, c quarks, s

quarks, or b quarks (c quarks couple like u quarks, whereas s quarks and b

quarks couple like d quarks). Deduce the values of vf and af for each of these

cases and consequently estimate the decay width of the Z boson. (The current

experimental value is 2.4952 ± 0.0023 GeV.)

[Take MZ = 91.19 GeV, sin2 θW = 0.23, and the fine-structure constant α =

1/129 (why this value?)].



5.6 The Higgs Part and Gauge Boson Masses

The Higgs doublet Lagrangian should contain a “spontaneous symmetry breaking” potential

which will give the Higgs a vev and self-interactions, and kinetic terms which will generate

the gauge boson masses and interactions between the Higgs and the gauge bosons. We first

consider the potential:

V (Φ) = −µ2Φ∗
iΦ

i + λ
(
Φ∗
iΦ

i
)2
. (5.42)

This potential has a minimum at Φ+
i Φi = 1

2
µ2/λ. Writing Φ in the form of eq. (5.19) and

replacing this in the potential eq. (5.42), we find that we get a mass term for the real Higgs

field H , with value mH =
√

2µ. As expected, the ωa do not appear in the potential. In an

ungauged theory, they would be the massless goldstone bosons. In a gauge theory like the

Standard Model, they will reappear as the longitudinal degrees of freedom of the massive

gauge bosons.

The remaining term of the Φ Lagrangian is the kinetic term (DµΦ)†(DµΦ). Looking at this

term more carefully will help us to understand where the “physical” gauge bosons (i.e. the

W±, Z and photon) come from, and how they are related to the W 1
µ ,W

2
µ ,W

3
µ , Bµ. To see the

effect of the Higgs vev on the gauge boson masses, it is most simple to work in the unitary

gauge, that is, we absorb the exponential of eq. (5.19) with a gauge transformation. In this

gauge, the covariant derivative acting on the Higgs doublet is

Dµ Φ =
1√
2


∂µ + i

g

2


 W 3

µ

√
2W−

µ√
2W+

µ −W 3
µ


+ i

g′

2
Bµ




 0

v + H


 , (5.43)

so that

|Dµ Φ|2 =
1

2
(∂µH)2 +

g2v2

4
W+µW−

µ +
v2

8

(
gW 3

µ − g′Bµ

)2
+ interaction terms , (5.44)

where the ‘interaction terms’ are terms involving three fields (two gauge fields and the H-

field). Eq. (5.44) tells us that the W 3
µ and Bµ fields mix (as do W 1

µ and W 2
µ) and the physical

gauge bosons must be superpositions of these fields, such that there are no mixing terms.

Thus we define

Zµ ≡ cos θW W 3
µ − sin θWBµ , (5.45)

Aµ ≡ cos θW Bµ + sin θWW
3
µ , (5.46)

with the weak mixing angle θW (“Weinberg angle”) defined by

tan θW ≡ g′

g
. (5.47)



With this eq. (5.44) is rewritten as

|Dµ Φ|2 =
1

2
(∂µH)2 +

g2v2

4
W+
µ W

−µ +
v2g2

8 cos2 θW
ZµZ

µ + 0AµA
µ . (5.48)

Here we see how SU(2) and U(1) are unified (or at least ‘entangled’) in the sense that

the neutral gauge boson that acquires a mass through the Higgs mechanism is the linear

superposition of a gauge boson from the SU(2) and the U(1)Y gauge boson.

From eq. (5.48) we can read off the masses of the gauge bosons. The last term tells us that

the linear combination eq. (5.46) remains massless. This field is identified with the photon.

For the other fields we have

MW =
1

2
gv , MZ =

1

2

gv

cos θW
. (5.49)

The Z boson mediates the neutral current weak interactions. These were not observed until

after the development of the theory. From the magnitude of amplitudes involving weak

neutral currents (exchange of a Z boson), one can infer the (tree level) magnitude of the

weak mixing angle, θW . The ratio of the masses of the Z and W bosons is a prediction of

the Standard Model. More precisely, we define a quantity known as the ρ-parameter by

M2
W = ρM2

Z cos2 θW . (5.50)

In the Standard Model ρ = 1 at tree level. In higher orders there is a small correction,

which depends on the definition used for sin θW (that is, which loop corrections are included

in sin θW ). Note that the ρ-parameter would be very different from one if the symmetry

breaking were due to a scalar multiplet which was not a doublet of weak isospin. Accurate

measurements of the ρ-parameter and other so-called electro-weak precision observables,

together with their prediction at higher order within the SM, serve as very powerful tests of

the SM. The Higgs enters in virtual loops, allowing for an indirect determination of its mass

through fits of the predictions to the data (see the homepage of the Electroweak Working

Group, http://lepewwg.web.cern.ch/LEPEWWG for more information).

The spontaneous symmetry breaking mechanism breaks SU(2)×U(1)Y down to U(1). It is

this surviving U(1) that is identified as the U(1) of electromagnetism. It is not the U(1)Y

of the original gauge group but a set of transformations generated by a particular linear

combination of the original U(1) and rotations about the third axis of weak isospin. To see

this we note that the explicit representation of the generator Y as a 2×2 matrix, which can

be combined with the explicit representation of T1, T2 and T3, is given by

Y =
1

2


 1 0

0 1


 . (5.51)



The factor 1/2 ensures the normalization12 condition eq. (2.7). Using eq. (5.51) it can easily

be seen that the symmetry associated with the generator

Q ≡ Y + T 3 =


 1 0

0 0


 (5.52)

is not broken, i.e. Q|0〉 = 0 (see eq. (4.5)). Thus, starting with four generators, we get

only three Goldstone bosons. These will become the longitudinal components of three gauge

bosons, thereby giving them a mass, whereas the fourth is left massless.

The coupling of any particle to the photon is always proportional to

g sin θW (Y + T3) = g sin θW Q . (5.53)

Thus we can identify g sin θW with one unit of electric charge, and we have the relationship

between the weak coupling g and the electron charge e,

e = g sin θW . (5.54)

We end this subsection by giving the remaining pieces of the SM Lagrangian from eqs. (5.44)

and (5.42),

LHiggs = |Dµ Φ|2 − µ2Φ∗
iΦ

i + λ
(
Φ∗
iΦ

i
)2

=
1

2
(∂µH)2 + µ2H2 +

g2v2

4
W+µW−

µ +
v2g2

8 cos2 θW
ZµZ

µ

+ interaction terms . (5.55)

5.7 Classifying the Free Parameters

The free parameters in the Standard Model for one generation are:

• The two gauge couplings for the SU(2) and U(1) gauge groups, g and g′.

• The two parameters µ and λ in the scalar potential V (Φ).

• The Yukawa coupling constants Yu, Yd, Ye and Yν .

It is convenient to replace these parameters by others, which are more directly measurable in

experiments, namely e, sin θW , me and mW , and mH , mu, md and mν . (Note that the gauge

12We warn the reader that in the literature sometimes a different normalization is used such that eq. (5.52)

reads Q = Y/2 + T 3.



sector is well measured, but the quark masses are not directly observable; we have yet to

find the Higgs, and although we see neutrino mass differences, measuring the absolute mass

scale is difficult — and the neutrino masses might not be directly proportional to Yukawa

couplings anyway.) The relation between these physical parameters and the parameters of

the initial Lagrangian are

tan θW =
g′

g
, (5.56)

e = g sin θW , (5.57)

mH =
√

2µ , (5.58)

MW =
g µ

2
√
λ
, (5.59)

me = Ye
µ√
λ
. (5.60)

Note that when we add more generations of fermions, we will acquire more parameters:

additional masses (or yukawa couplings, i.e. 4 parameters per generation), and also mixing

angles, as we will see in the next chapter.

In terms of these measured quantities, the Z mass, MZ , and the Fermi-coupling, GF , are pre-

dictions of the SM (although historically GF was known for many years before the discovery

of the W boson, and its value was used to predict the W mass).

5.8 Summary

• Weak interactions are mediated by the SU(2) gauge bosons, which act only on the

left-handed components of fermions.

• The (left-handed) neutrino and left-handed component of the electron form an SU(2)

doublet, whereas the right-handed components of the electron and neutino are SU(2)

singlets. Similarly for the quarks.

• There is also a weak hypercharge U(1)Y gauge symmetry. Both left- and right-handed

quarks transform under this U(1)Y with a hypercharge which is related to the elec-

tric charge by the relation eq. (5.54). The left-handed leptons and the eR also carry

hypercharge, but the νR has no SM gauge interactions.

• In the symmetry limit (before spontaneous symmetry breaking) the fermions with

SU(2) gauge interactions are massless.13 The spontaneous symmetry breaking mech-

anism which gives a vev to the scalar field also generates the fermion masses.

13This does not apply to νR, which can have an explicit mass term



• The scalar multiplet that is responsible for the spontaneous symmetry breaking also

carries weak hypercharge. As a result, one neutral gauge boson (the Z) acquires a

mass, whereas its orthogonal superposition is the massless photon. The magnitude of

the electron charge, e, is then given by e = g sin θW .

• The weak interactions proceed via the exchange of massive charged or neutral gauge

bosons. The old four-fermi weak Hamiltonian is an effective Hamiltonian which is valid

for low energy processes in which all momenta are small compared with the W mass.

The Fermi coupling is obtained in terms of e, MW and sin θW by eq. (6.16).

For completeness, a full set of Feynman rules for the case of a single family of leptons is

given as an appendix to this lecture.



Feynman Rules in the Unitary Gauge (for one Lepton Generation)

Propagators:

(All propagators carry momentum p.)

W
µ ν −i (gµν − pµ pν/M

2
W )/(p2 −M2

W )

Z
µ ν −i (gµν − pµ pν/M

2
Z)/(p2 −M2

Z)

A
µ ν −i gµν/p2

e
i (γ · p+me)/(p

2 −m2
e)

ν
i γ · p/p2

H
i/(p2 −m2

H)



Three-point gauge-boson couplings:

(All momenta are defined as incoming.)

Aρ

W−
µ W+

ν

p3

p1 p2
i g sin θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)

Zρ

W−
µ W+

ν

p3

p1 p2
i g cos θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)



Four-point gauge-boson couplings:

W−
ρ W+

σ

W−
µ W+

ν

i g2 (2gµρ gνσ − gµν gρσ − gµσ gνρ)

Zρ Zσ

W−
µ W+

ν

i g2 cos2 θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Aρ Aσ

W−
µ W+

ν

i g2 sin2 θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Zρ Aσ

W−
µ W+

ν

i g2 cos θW sin θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)



Three-point couplings with Higgs scalars:

H H

− 3
2
i g m2

H/MW

H

e e

− 1
2
i g me/MW

H

W−
µ W+

ν

i g MW gµν

H

Zµ Zν

i (g/ cos2 θW ) MW gµν



Four-point couplings with Higgs scalars:

H H

H H

− 3
4
i g2 (m2

H/M
2
W )

H H

W−
µ W+

ν

1
2
i g2 gµν

H H

Zµ Zν

1
2
i (g2/ cos2 θW ) gµν



Fermion interactions with gauge bosons:

W−
µ

e ν

− i
(
g/2

√
2
)
γµ (1 − γ5)

Aµ

e e

i g sin θW γµ

Zµ

e e

1
4
i (g/ cos θW ) γµ

(
1 − 4 sin2 θW − γ5

)

Zµ

ν ν

− 1
4
i (g/ cos θW ) γµ (1 − γ5)



6 Additional Generations

In the previous section, the Lagrangian of the Standard Model with one family was given.

Here we include additional “families” (or “generations”) and briefly outline the phenomeno-

logical consequences in the quark sector. Family-changing processes among the leptons will

be discussed in the neutrino chapter.

6.1 A Second Quark Generation

The second generation of quarks consists of a c (“charm”) quark, which has electric charge

+2
3

and an s (“strange”) quark, with electric charge −1
3
. We can just add a copy of the left-

handed isodoublet and copies of the right-handed singlets in order to include this generation.

The only difference would be in the Yukawa interaction terms where the coupling constants

are chosen to reproduce the correct masses for the new quarks. But in this case there is

a further complication. It is possible to write down Yukawa terms which mix quarks of

different generations, e.g. the Yukawa couplings of the previous section become matrices in

flavour space,

− [Yd]ijqLi Φ dRj − [Yu]ijqLi Φ
c uRj + h.c. (6.1)

where i, j are generation indices. The off-diagonal element [Yd]12 seems to gives rise to a

mass mixing between d and s quarks.

The Yukawa matrices are nf × nf matrices, where nf is the number of flavours, and can

be diagonalised by independant unitary transformations on the left and right (because Y Y †

and Y †Y are hermitian). The physical particles are those that diagonalize the mass matrix.

So it is convenient to rotate to the eigenbasis of the mass matrix, where there is no Yukawa

mixing between quarks of different generations.

Notice that when we add a second generation, it has the same gauge interactions as the first.

So if we make a unitary transformation in generation space, the fermion kinetic terms remain

unchanged. Taking advantage of this freedom, we can rotate uR, dR and qL respectively to

the mass eigenstate bases of the uR, dR and uL.

This means, however, that the quark doublets which couple to the gauge bosons are, in

general, superpositions of physical quarks, because we have written the dLi in the uLi mass

eigenstate basis:

 u

d̃



L

, (6.2)



and 
 c

s̃



L

, (6.3)

where d̃ and s̃ are related to the physical d and s quarks by

 d̃

s̃


 = VC


 d

s


 , (6.4)

where VC is a unitary 2 × 2 matrix.

Terms which are diagonal in the quarks are unaffected by this unitary transformation of the

quarks. Thus the coupling to photons or Z bosons is the same whether written in terms of

d̃, s̃ or simply s, d. We will return to this later.

On the other hand the coupling to the charged gauge bosons is

− g

2
√

2
u γµ(1 − γ5) d̃W−

µ − g

2
√

2
c γµ(1 − γ5) s̃W−

µ + h.c. (6.5)

which we may write as

− g

2
√

2


 u

c



T

γµ(1 − γ5)VC


 d

s


 W−

µ + h.c. . (6.6)

The most general 2 × 2 unitary matrix may be written as

 e−iγ

1




 cos θC sin θC

− sin θC cos θC




 eiα

eiβ


 , (6.7)

where we have set one of the phases to 1 since we can always absorb an overall phase by

adjusting the remaining phases, α, β and γ.

The phases, α, β, γ can be absorbed by performing a global phase transformation on the d,

s and u quarks respectively. This again has no effect on the neutral terms. Thus the most

general observable unitary matrix is given by

VC =


 cos θC sin θC

− sin θC cos θC


 , (6.8)

where θC is the Cabibbo angle.

In terms of the physical quarks, the charged gauge boson interaction terms are

− g

2
√

2

(
cos θC u γ

µ(1 − γ5) d + sin θC u γ
µ(1 − γ5) s

+ cos θC c γ
µ(1 − γ5) s − sin θC c γ

µ(1 − γ5) d
)
W−
µ + h.c. . (6.9)



This means that the u quark can undergo weak interactions in which it is converted into

an s quark, with an amplitude that is proportional to sin θC . It is this that gives rise to

strangeness violating weak interaction processes, such as the leptonic decay of K− into a

muon and antineutrino. The Feynman diagram for this process is

K−
s

ū

ν̄

µW−

6.2 Flavour Changing Neutral Currents

Although there are charged weak interactions that violate strangeness conservation, there

are no known neutral weak interactions that violate strangeness. For example, the K0 does

not decay into a muon pair or two neutrinos (branching ratio < 10−5). This means that

the Z boson only interacts with quarks of the same flavour. We can see this by noting that

the Z boson interaction terms are unaffected by a unitary transformation. This absence of

flavour changing neutral currents (FCNC) in experimental data is rather important. As we

will see, in the Standard Model there are no FCNC at tree level, and the absence of FCNC

is an important constraint for many extensions of the Standard Model.

The Z boson interactions with d and s quarks are proportional to

d̃ d̃+ s̃ s̃ (6.10)

(we have suppressed the γ-matrices which act between the fermion fields). Writing this out

in terms of the physical quarks we get

cos2 θC d d + sin θC cos θC s d + cos θC sin θC d s + sin2 θC s s

+ cos2 θC s s − sin θC cos θC d s − cos θC sin θC s d + sin2 θC d d . (6.11)

We see that the cross terms cancel out and we are left with simply

d d + s s . (6.12)

This cancellation is the reason for the absence of FCNC and is simply a consequence of the

unitarity of the mixing matrix eq. (6.7). This effect is also known as the “GIM” (Glashow-

Iliopoulous-Maiani) mechanism. It was used to predict the existence of the c quark.



There can be a small contribution to strangeness changing neutral processes from higher

order corrections in which we do not exchange a Z boson, but two charged W bosons. The

Feynman diagrams for such a contribution to the leptonic decay of a K0 (which consists of

a d quark and an s antiquark) are:

d

s̄

W−

W+

µ

µ̄

νu c+

d

s̄

W−

W+

µ

µ̄

ν

These diagrams differ in the flavour of the internal quark which is exchanged, being a u

quark in the first diagram and a c quark in the second. Both of these diagrams are allowed

because of the Cabibbo mixing. The first of these diagrams gives a contribution proportional

to

+ sin θC cos θC ,

which arises from the product of the two couplings involving the emission of the W bosons.

The second diagram gives a term proportional to

− cos θC sin θC .

If the c and u quarks had identical masses then these two contributions would cancel precisely.

However, because the c quark is much more massive than the u quark, there is some residual

contribution. This was used to limit the mass of the c quark to < 5 GeV, before it was

discovered.

6.3 Adding Another Lepton Generation

We first neglect the νR and neutrino masses. In this approximation, there will be no gen-

eration mixing in the lepton sector, so we can include other lepton families, the muon and

its neutrino, and the tau-lepton with its neutrino, simply as copies of what we have for the

electron and its neutrino. For each family we have a weak isodoublet of left-handed leptons

and a right-handed isosinglet for the charged lepton.

Thus, the mechanism which determines the decay of the muon (µ) is one in which the muon

converts into its neutrino and emits a charged W−, which then decays into an electron and

(electron-) antineutrino. The Feynman diagram is



µ

νµ

ν̄e

e
W−

The amplitude for this process is given by the product of the vertex rules for the emission (or

absorption) of a W− with a propagator for the W boson between them. Up to corrections of

order m2
µ/M

2
W , we may neglect the effect of the term qµqν/M2

W in the W -boson propagator,

so that we have
(
−i g

2
√

2
νµ γ

ρ(1 − γ5)µ

) (
− i gρσ
q2 −M2

W

) (
− i

g

2
√

2
e γσ(1 − γ5) νe

)
, (6.13)

where q is the momentum transferred from the muon to its neutrino. Since this is negligible

in comparison with MW we may neglect it and the expression for the amplitude simplifies to

i
g2

8M2
W

νµ γ
ρ(1 − γ5)µ e γρ(1 − γ5)νe . (6.14)

Before the development of this model, weak interactions were described by the “four-fermi

model” with a weak interaction Hamiltonian given by

Hijkl =
GF√

2
ψi γ

µ(1 − γ5)ψj ψk γµ(1 − γ5)ψl . (6.15)

We now recognize this as an effective low-energy Hamiltonian which may be used when the

energy scales involved in the weak process are negligible compared with the mass of the W

boson. The Fermi coupling constant, GF , is related to the electric charge, e, the W mass

and the weak mixing angle by

GF =
e2

4
√

2M2
W sin2 θW

. (6.16)

This gives us a value for GF ,

GF = 1.12 × 10−5 GeV−2 , (6.17)

which is very close to the value of 1.17 × 10−5 GeV−2 as measured from the lifetime of the

muon.

We see that the weak interactions are ‘weak’, not because the coupling is particularly small

(the SU(2) gauge coupling is about twice as large as the electromagnetic coupling), but



because the exchanged boson is very massive, so that the Fermi coupling constant of the

four-fermi theory is very small. The large mass of the W boson is also responsible for the

fact that the weak interactions are short range (of order 10−18 m).

In the Standard Model, however, we also have neutral weak currents. Thus, for example, we

can have elastic scattering of muon-type neutrinos against electrons via the exchange of the

Z boson. The Feynman diagram for such a process is:

νµ

νµ

e
e

Z

Exercise 6.1

Let us write the four-fermi interaction for this process as

H =
GF√

2
νe γ

ρ(1 − γ5)νe µγρ(v − aγ5)µ ,

where v and a give us the vector and axial-vector coupling of the muon to the

Z boson (the muon couples in an identical way to the electron). Determine v

and a in terms of θW .

6.4 Adding a Third Generation (of Quarks)

Adding a third generation is achieved in a similar way. In this case the three weak isodoublets

of left-handed fermions are 
 u

d̃


 ,


 c

s̃


 ,


 t

b̃


 , (6.18)

where d̃, s̃ and b̃ are related to the physical d, s and b quarks by




d̃

s̃

b̃


 = VCKM




d

s

b


 . (6.19)

The 3×3 unitary matrix VCKM is called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Once

again it only affects the charged weak processes in which a W boson is exchanged. For this



reason the elements are written as




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (6.20)

A 3× 3 unitary matrix can have nine independent parameters (counting the real and imag-

inary parts of a complex element as two parameters). In this case there are six possible

fermions involved in the charged weak processes and so we can have five relative phase

transformations, thereby absorbing five of the nine parameters.

This means that whereas the Cabibbo matrix only has one parameter (the Cabibbo angle,

θC), the CKM matrix has four independent parameters. If the CKM matrix were real it

would only have three independent parameters. This means that in the case of the CKM

matrix some of the elements may be complex. The four independent parameters can be

thought of as three mixing angles between the three pairs of generations and a complex

phase.

The requirement of unitarity puts various constraints on the elements of the CKM matrix.

For example we have

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0 .

This can be represented as a triangle in the complex plane known as the “unitarity triangle”:

VudV
∗
ub VtdV

∗
tb

VcdV
∗
cb

α

βγ

The angles of the triangle are related to ratios of elements of the CKM matrix

α = − arg

{
Vtd V

∗
tb

Vud V ∗
ub

}
, (6.21)

β = − arg

{
Vtd V

∗
tb

Vcd V
∗
cb

}
, (6.22)

γ = − arg

{
Vud V

∗
ub

Vcd V ∗
cb

}
. (6.23)

A popular representation of the CKM matrix is the Wolfenstein parameterisation which uses

the parameters A, which is assumed to be of order unity, a complex number (ρ + i η) and

a small number λ, which is approximately equal to sin θC . In terms of these parameters the



CKM matrix is written as

VCKM =




1 − λ2/2 λ Aλ3 (ρ− i η)

−λ 1 − λ2/2 Aλ2

Aλ3 (1 − ρ− i η) −Aλ2 1


 + O(λ4) . (6.24)

We see that whereas the W bosons can mediate a transition between a u quark and a b

quark (Vub) or between a t quark and a d quark (Vtd), the amplitude for such transitions are

suppressed by the cube of the small quantity which determines the amplitude for transitions

between the first and second generations, λ. The O(λ4) corrections are needed to ensure the

unitarity of the CKM matrix and these corrections have several matrix elements which are

complex.

6.5 CP Violation

The possibility that some of the elements of the CKM matrix may be complex provides a

mechanism for the violation of CP conservation. Violation of CP conservation has been

observed in the K0 −K
0

system, and is currently being investigated for B mesons.

Higher-order corrections to the masses of B0 and B0 give rise to mixing between the two

states. Thus the mass matrix can be written as

 MB0 ∆M

(∆M)∗ MB0


 . (6.25)

The mass eigenstates are therefore

|BL〉 = p |B0〉 + q |B0〉 , (6.26)

whose mass is M − 1
2
∆m, and

|BH〉 = p |B0〉 − q |B0〉 , (6.27)

whose mass is M + 1
2
∆m, where we have introduced the mass difference between the two

mass eigenstates, ∆m ≡ 2
√

∆M(∆M)∗.

If ∆M were real then we would have p = q = 1/
√

2 and these mass eigenstates would be

CP eigenstates, using the fact that

CP |B0〉 = −|B0〉.

However, the non-zero phases in the CKM matrix give rise to a complex phase for ∆M ,

so that the ratio of p and q is a complex phase, indicating that BL and BH are not CP

eigenstates.



A typical weak interaction contribution to the mass-mixing term, ∆M , is given by the

Feynman diagram

b

d

W+

W−

d

b

qjqi

Note that on the left we have a B0, consisting of a b quark and a d antiquark, whereas on the

right we have a B
0

consisting of a d quark and a b antiquark. The internal quarks marked

qi and qj can each be u, c or t quarks, and each of the vertices carries some element of the

CKM matrix. The total contribution, therefore, may be written as

∑

i=u,c,t

∑

j=u,c,t

Vib V
∗
id V

∗
jb Vjd aij .

Once again, if all the masses of the quarks were equal then the amplitudes aij would all be

equal, and the sum would vanish by the unitarity constraints imposed on the elements Vik.

Since the quarks do not all have the same mass, there is some residual contribution. Indeed,

the above diagram is dominated by the term in which a t quark is exchanged on both sides,

since this quark is much more massive than the rest.

Restricting ourselves to the t quark exchange contribution, we can read off the phase of this

contribution, without calculating the diagram itself. It is given by the phase of the products

of the CKM matrix elements entering in the diagram, namely

(V ∗
td Vtb)

2.

The phase of this quantity is the square of the ratio of p and q, so we have

p

q
=

V ∗
td Vtb
Vtd V

∗
tb

.

Now suppose that at time t = 0 we prepare a state which is purely B0. Accounting for the

fact that the B0 meson has a decay rate Γ, we can use eqs. (6.26, 6.27) to write the state at

time t as

|B(t)〉 = e−iMt e−Γt/2

(
cos

(
∆m

2
t
)
|B0〉 + i

q

p
sin

(
∆m

2
t
)
|B0〉

)
. (6.28)

Now suppose that the amplitude for a state |B0〉 to decay into some CP eigenstate |f〉 is

Af , whereas the amplitude for a state |B0〉 to decay into the state |f〉 is Af . Once again, if



CP were conserved, we would have

Af = ±Af ,

but the CP violating phases give rise to a more general complex phase for the ratio of these

two amplitudes.

This means that the amplitude to find the state |f〉 after time t is given by

〈f |Hwk|B(t)〉 = e−iMt e−Γt/2

(
cos

(
∆m

2
t
)
Af + i

q

p
sin

(
∆m

2
t
)
Af

)
. (6.29)

Similarly, if we had prepared a B
0

at t = 0 the amplitude to find the state |f〉 would be

〈f |Hwk|B(t)〉 = e−iMt e−Γt/2

(
cos

(
∆m

2
t
)
Af − i

p

q
sin

(
∆m

2
t
)
Af

)
. (6.30)

Taking the moduli squared for the decay rates we derive the result

Γ(B(t) → f) − Γ(B(t) → f)

Γ(B(t) → f) + Γ(B(t) → f)
= − sin (∆mt)ℑm

(
q

p

Af
Af

)
. (6.31)

For example, if the state |f〉 is the CP even two-pion state |π0 π0〉, the Feynman diagram at

the quark level for A2π is

W−
b

d̄

u

ū

d
d̄

To fully calculate the decay amplitudes we would need to know the wave functions for the

mesons in terms of the constituent quark-antiquark pairs, but for the ratio A2π/A2π we just

need the ratios of the CKM matrix elements occurring in this diagram, namely

A2π

A2π
=
Vub V

∗
ud

V ∗
ub Vud

,

so that (using eq. (6.21))

ℑm
(
q

p

A2π

A2π

)
=

Vtd V
∗
tb

V ∗
td Vtb

Vub V
∗
ud

V ∗
ub Vud

= − sin (2α) . (6.32)

As a further example we consider the so-called “golden channel” where |f〉 is the state

|J/ψKS〉. In this case the quark level Feynman diagram is



W−
b

d̄

c

c̄

s
d̄

Here there is a further complication since the outgoing state (s d̄) is actually a K
0

(and

likewise for the B
0

decay it would be a K0). As in the B0 system, the mass eigenstates are

given by

|KS〉 = pK |K0〉 + qK |K0〉 ,
|KL〉 = pK |K0〉 − qK |K0〉 . (6.33)

Once again, if CP were conserved we would have pK = qK = 1/
√

2, and these mass eigen-

states would be eigenstates of CP . The phases in the CKM matrix introduce a phase in the

ratio of pK and qK , calculated from diagrams similar to the ones for the B0 system (but with

the b quark replaced by an s quark). In this case it is the diagram with an internal c quark

exchange that dominates (although the mass of the c is much smaller than the t quark mass,

the CKM matrix elements are much larger for c quark exchange than for t quark exchange

and this effect dominates), so we have a factor

qK
pK

=
V ∗
cd Vcs
Vcd V ∗

cs

which enters in the ratio of the decay amplitudes, giving

AJ/ψKS

AJ/ψKS

= −Vcb V
∗
cs

V ∗
cb Vcs

V ∗
cd Vcs
Vcd V ∗

cs

= −Vcb V
∗
cd

V ∗
cb Vcd

(a minus occurs because the J/ψKS state is CP odd), so that (using eq. (6.22))

ℑm
(
q

p

AJ/ψKS

AJ/ψKS

)
= −Vtd V

∗
tb

V ∗
td Vtb

Vcb V
∗
cd

V ∗
cb Vcd

= sin (2β) . (6.34)

6.6 Summary

• Additional generations may be added, with gauge interactions copied from the first,

but in this case one can have mass-mixing between quarks of different generations.

In terms of the mass eigenstates, the charged W bosons mediate transitions between



a T 3 = +1
2

quark (u, c or t) and a superposition of T 3 = −1
2

quarks (d, s and b).

In two generations, this mechanism allows weak interactions that violate strangeness

conservation, and the mixing matrix has only one independent parameter, the Cabibbo

angle.

• The unitarity of the mixing matrix guarantees that there are no strangeness changing

neutral processes. Weak interactions involving the exchange of a Z boson do not change

flavour. There is a small violation of this in higher orders owing to the mass splitting

between the quarks.

• Including a third generation, the mixing matrix for the T 3 = −1/2 quarks (d, s and

b) is the CKM matrix. This matrix has four independent parameters, so that some of

the matrix elements may be complex.

• The possibility that some of the elements of the CKM matrix may be complex leads to

a weak interaction contribution to the mass mixing of B0 and B
0
which can be complex.

This gives rise to CP violation, since the eigenstates of the B0 mass matrix are then

no longer eigenstates of CP . The CKM matrix also introduces phases in the ratios of

the decay amplitudes for B0 and B
0

to a given CP eigenstate. Products of the phase

of the mass mixing and the ratio of the decay amplitudes can be observed directly in

tagged B meson experiments, and the angles α and β of the unitarity triangle can be

directly measured.



7 Neutrinos

In its original formulation, the Standard Model had massless neutrinos — neutrino masses

were not measured at the time. We now know that neutrinos have a (very small) mass,

which can be accommodated in the SM in a straightforward way. We will discuss this in the

second part of this chapter. There are two possible types of neutrino mass terms, “Dirac”

and “Majorana”, because the neutrino has zero electric charge. This makes neutrino mass

terms a bit different from those of the other fermions and may explain why neutrinos are

much lighter than SM fermions.

In the first part of this chapter we focus on the currently observed consequence of small

neutrino masses, neutrino oscillations.

7.1 Neutrino Oscillations

Recall that in the quark sector, there were flavour changing charged current processes, that

is, the W could interact with an up-type quark of one generation, and a down-type quark

of another. If the neutrinos have mass, we should get exactly the same effect in the lepton

sector, except that the mixing matrix Ufm is called the PMNS matrix (for Pontecorvo, Maki,

Nakagawa and Sakata), rather than CKM. The index order “flavour-mass” in Ufm indicates

that U rotates a vector from the neutrino mass basis to the neutrino “flavour” basis, which

is the charged lepton mass basis.

The physical consequences of mixing angles are quite different between the lepton sector and

the quarks. This is because neutrinos are very light and have only weak interactions. In the

quark sector one can differentiate D → Kµ̄ν from D → πµ̄ν, because the π and K have

strong and electromagnetic interactions, which allows us to track them in the detector, and

they have sufficiently different masses that the tracks are distinguishable. This is not the

case in trying to distinguish µ→ eν3ν̄2 from µ→ eν3ν̄1.

The small masses and weak interactions of neutrinos imply that the wave packets corre-

sponding to different neutrino mass eigenstates remain superposed over long distances. The

effects of flavour mixing can therefore be seen via oscillations.

For simplicity we will consider the case of two generations which in the charged lepton sector

we will take to be the electron and muon.14 We label the neutrino mass eigenstates as ν1

14Of course, in the Standard Model we have three families, but the important concepts can be understood

in the simpler case.



and ν2. They are related by an equation very similar to eq. (6.4),

 νe

νµ


 =


 cos θ sin θ

− sin θ cos θ




 ν1

ν2


 . (7.1)

Now we would like to compute the amplitude for an oscillation process. Suppose that we have

an initial beam of muons which decays to relativisitic neutrinos of energy E and momentum

k. The neutrinos travel a distance L = τ to a detector where they produce an e or a µ by

charged current (CC) scattering. The amplitude will be

Aµα ∼
∑

j

Uµj × e−i(Ejτ−kjL) × U∗
αj , (7.2)

where the three pieces arise from production, propagation and detection. (From your field

theory notes, you can check that the Feynman propagator in position space, G(0, (τ, L)), is

the exponential, where the momentum integral in the propagator was taken care of in the

production process of the neutrinos with 4-momentum (E, k).)

First, suppose that we can neglect the neutrino masses, so (Ej , kj) = (En, kn) for any j, n.

The propagation exponential can then be factored out, and (7.2) is the unitarity condition

for U ,

UµjU
∗
αj = δµα . (7.3)

Recall that for quarks, with three generations, this relation gives the unitarity triangle.

Now we allow the neutrinos to have small masses, m ≪ E, k, so that L ≃ τ remains. Then

the exponent can be written as

−i(Ejτ − kjL) ≃ −i(Ej − kj)L = −iE
2
j − k2

j

E + k
L ≃ −im

2
j

2E
L , (7.4)

such that

Pµα = |Aµα|2 = |
∑

j

Uµje
−i∆m2

j
L/(2E)U∗

αj |2 . (7.5)

Using the explicit form of U given in eq. (7.1) one obtains the muon survival probability

Pµµ = 1 − sin2 2θ sin2 (m2
2 −m2

1)L

4E
. (7.6)

In reality, there are three generations of leptons in the SM, so the MNS matrix U is 3 × 3,

and there are three mass eigenstates in the sum of eq. (7.5). As in the case of CKM, MNS

can be written in terms of three angles and one phase:

Û =




c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13


 (7.7)



≃




c12 s12 s13e
−iδ

−s12/
√

2 c12/
√

2 1/
√

2

s12/
√

2 −c12/
√

2 1/
√

2


 , (7.8)

where the “solar” angle θ12 ≃ π/6, and we have used the approximate measured value of the

atmospheric angle θ23 ≃ π/4. s13 = sin θ13 ≤ 0.2 is known from experimental bounds and

θ13 is significantly smaller than the other two angles. Note that, unlike the quark sector,

some mixing angles are large. Combined with the small neutrino masses, this is puzzling

and provoking to theorists, who expend much effort into building models of this.

It is often said that MNS has three phases, so let us recall the phase choices that allow us

to write eq. (7.7), so as to understand where the other two phases could be:

• A 3 × 3 complex matrix has 18 real parameters.

• The unitarity condition UU † = 1 reduces this to 9, which can be taken as 3 angles and

6 phases.

• Five of those phases are relative phases between the fields e, µ, τ , ν1, ν2 and ν3,

• ... so if we are free to choose the phases of all the left-handed fermions, we are left

with one phase in the mixing matrix. This was the case with the quarks, where any

potential phase in the quark masses could be absorbed by the right-handed fermion

fields.

• If the right-handed fields do not appear in our physical process (which means the masses

appear as mm∗), then we are free to make the above phase choice, and our process

is independant of any possible phase of the masses. This is the case for neutrino

oscillations.

• We will see in a later section that the νL can have so-called “Majorana” masses, between

themselves and their antiparticle. This means that it is the left-handed neutrino field

which must absorb the phase of the Majorana mass. So in physical processes where the

Majorana mass appears linearly (and not as mm∗; this is the case e.g. in neutrinoless

double-beta decay), one can choose the phase such that the mass is real — in which

case one can remove one less phase from MNS, or one can keep MNS with one phase,

and allow complex masses.

• It is always possible to remove the phase from one majorana mass by using the global

overall phase of all the leptons. (This overall phase corresponds to the global symmetry

of lepton number conservation in a theory without majorana masses and is the sixth



phase of e, µ, τ , ν1, ν2 and ν3, which we could not use to remove phases from the

lepton number conserving MNS matrix.) So, in three generations, there are possibly

two complex majorana neutrino masses, so two “Majorana” phases in addition to the

“Dirac” phase δ of MNS.

Although there are three generations, it is well known that for the oscillation probabilities

we observe, with the mixing angles that are measured, two neutrino probabilities are a very

good approximation. Why is this?

Let us return to the oscillation amplitude Aαβ(L), and imagine it as the sum of three vectors

in the complex plane. If α = β, the unitarity condition at L = 0 says they should sum to a

vector of length one. If α 6= β, then they should sum to zero and this is the unitarity triangle.

At non-zero L, two of the vectors rotate in the complex plane, with frequencies (m2
j−m2

1)/2E

— so neutrino oscillations correspond, in some sense, to time-dependent non-unitarity.

Consider the oscillation probabilities Pµα, measured for atmospheric neutrinos, on length

scales corresponding to m2
3 − m2

1. The solar mass difference can be neglected, because

m2
2−m2

1 ≪ m2
3−m2

1, so there is only one relevant mass difference, and the survival probability

behaves as for two generations. This is easy to visualise in the complex plane, where only

the vector Uµ3U
∗
α3 rotates with L. The stationary sum Uµ2U

∗
α2 + Uµ1U

∗
α1 can be treated as

a single vector, so this looks like a two generation system. So “atmospheric” oscillations

can be approximated as two-neutrino oscillations because the atmospheric mass difference

is very large compared to the solar one.

In the case of the solar mass difference, measured for instance at KamLAND, the two neutrino

approximation is good because θ13 is small. The observed survival probability is Pee and

since Ue3 ≪ Uej , j = 1, 2, the last term can be dropped in

Aee =
∑

j

Ueje
−i∆m2

j
L/(2E)U∗

ej . (7.9)

7.2 Oscillations in Quantum Mechanics (in Vaccum and Matter)

This subsection reviews a more conventional derivation of neutrino oscillations in two gener-

ations, and includes neutrino oscillations in matter. Electron neutrinos acquire an effective

mass term from their interactions with dense matter — this is the MSW effect — which can

have significant effects in the sun and in supernovae, and over long baselines in the earth.

In the mass eigenbasis we have the Schrödinger equation

i
d

dt
Ψ = H · Ψ (7.10)



with a diagonal Hamiltonian

H =


 E1 0

0 E2


 . (7.11)

This Schrödinger equation can easily be solved. Defining our initial states at t = 0 as

|1〉 ≡ |1(t = 0)〉, |2〉 ≡ |2(t = 0)〉 we get the time dependent states

|1(t)〉 = e−iE1t|1〉 ,
|2(t)〉 = e−iE1t|2〉 . (7.12)

Let us repeat the last few steps in the interaction eigenbasis. Multiplying eq. (7.10) by V

from the left we get the corresponding Schrödinger equation as

i
d

dt
Ψ̃ = H̃ · Ψ̃ (7.13)

with

H̃ ≡ V ·H · V −1 =


 a+ b c

c a− b


 , (7.14)

where

a =
1

2
(E1 + E2) , (7.15)

b =
1

2
(E1 −E2) cos(2θ) , (7.16)

c = −1

2
(E1 − E2) sin(2θ) . (7.17)

The crucial feature of the new Hamiltonian is that it is no longer diagonal. As a result,

if we start at time t = 0 with an interaction eigenstate |α〉, then at a later time we get

a superposition of |α〉 and |β〉 interaction eigenstates. Indeed, using eq. (7.1) for the time

dependent states we get

|α(t)〉 = e−iE1t cos θ |1〉 + e−iE2t sin θ |2〉 , (7.18)

|β(t)〉 = −e−iE1t sin θ |1〉 + e−iE2t cos θ |2〉 . (7.19)

Let us now use this relation to compute the oscillation probability Pα→β(t). What we mean

by this is the following: assume that at t = 0 we know that our state is a pure interaction

eigenstate |α〉. To be concrete we can assume this is an electron neutrino νe created in the

sun. Pα→β(t) then gives us the probability that at a later time t this state has evolved into

an interaction eigenstate |β〉. Of course, this probability is simply the absolute value of the

amplitude squared

Pα→β(t) = |〈β|α(t)〉|2



=
∣∣∣− sin θ cos θ

(
e−iE1t − e−iE2t

)∣∣∣
2

=
1

2
sin2(2θ) (1 − cos(E2 − E1)t)

= sin2(2θ) sin2
(
E2 − E1

2
t
)
. (7.20)

In the first step we have used eq. (7.18) and the orthogonality of the mass eigenstates

〈i|j〉 = δij . The expression for Pα→β(t) can be brought into a more useful form by noting

that

Ei =
√
p2 +m2

i = p+
m2
i

2p
+ . . . (7.21)

and, therefore,

1

2
(E2 −E1) ≃ m2

2 −m2
1

4E
≡ ∆m2

4E
(7.22)

where E is the energy of the beam.15 Furthermore, since the neutrinos travel at the speed

of light, we have L = vt = ct = t, where L is the distance travelled by the neutrino. Thus,

we arrive at the final expression for the oscillation probability,

Pα→β(t) = sin2(2θ) sin2

(
L

∆m2

4E

)
. (7.23)

Eq. (7.23) has the expected properties in that the probability vanishes for L → 0, θ → 0

and most notably for ∆m2 → 0. This last limit tells us that there is no mixing if the two

neutrino species have the same mass and, in particular, if they are massless.

So far we have considered oscillations in vacuum, i.e. we have assumed that the neutrinos

were travelling through the vacuum. While this is true most of the time, the neutrinos

produced in the sun first have to travel through the sun before they can reach us. The

matter surrounding the neutrinos can have a crucial effect on the oscillation probability for

the neutrinos. This effect is called the matter effect or the Mikheyev-Smirnov-Wolfenstein

(MSW) effect.

The question at the heart of the problem is: how does the Hamiltonian H̃ , eq. (7.14),

change through interactions of the neutrinos with surrounding matter? There are basically

neutral and charged current interactions. As we have learnt, neutral current interactions are

mediated by the exchange of a Z boson. Taking into account that the surrounding matter

is basically made of protons, neutrons and electrons, a typical Feynman diagram is:

15This argument can be made more rigorously using wave packets.



νx νx

p, n, e p, n, e

Z

The important point is that these interactions are independent of the flavour x of the neu-

trino. Thus they affect the two diagonal entries of the Hamiltonian in the same way. This

means they change a, eq. (7.15), i.e. the Hamiltonian is modified by a → ā. As we will see

later, this change is irrelevant.

The charged current interactions are mediated by a W±. A typical Feynman diagram is:

νe e−

e− νe

W

These interactions take place only for electron neutrinos since there are no µ’s (or τ ’s) in

the surrounding matter. In our convention where we identify the |α〉 state with an electron

neutrino, this means that only the top-left entry of the Hamiltonian, eq. (7.14), is modified.

Thus, including the matter effects we arrive at the following Hamiltonian,

H̃MSW =


 ā+ b+ w c

c ā− b


 , (7.24)

where w comes from the charged current interactions. The explicit form of w is not important

for us. What we want to know is how the w-term modifies the mixing angle. To find the

modified mixing angle θMSW we have to diagonalize H̃MSW, i.e. we have to find

VMSW =


 cos θMSW sin θMSW

− sin θMSW cos θMSW


 (7.25)

such that

HMSW ≡ V −1
MSW · H̃MSW · VMSW (7.26)



is diagonal. If we plug the explicit forms for VMSW, eq. (7.25), and H̃MSW, eq. (7.24), into

eq. (7.26) we find the off-diagonal terms of HMSW to be

c cos(2θMSW) +
2b+ w

2
sin(2θMSW) . (7.27)

This vanishes for

tan(2θMSW) = − 2c

2b+ w
=

−∆m2 sin(2θ)

4Ew − ∆m2 cos(2θ)
(7.28)

where we have used eqs. (7.16) and (7.17).

We note that θMSW does not depend on a, thus as mentioned above, the change a→ ā induced

by the neutral current interactions does not matter at all. The important point is that

for 4Ew ∼ ∆m2 cos(2θ) there can be a dramatic effect and the oscillation probability can

increase substantially. In fact, this effect is very important in the explanation of experimental

results.

7.3 The See-Saw Mechanism

In this section we are concerned with neutrino masses and offer a possible explanation as to

why they might be so small compared to other fermion masses. We will restrict ourselves to

the case of one family.

As mentioned previously, introducing a right-handed neutrino allows us to write down the

same kind of Yukawa coupling as for the u-type quarks, eq. (5.25). This will result in a

‘usual’ Dirac mass term for the neutrinos of the form

mD νν = mD(νLνR + νRνL) (7.29)

(compare to eq. (5.27)). There is no doubt that such a term can be introduced in the

Lagrangian, but it leads immediately to the question of why the ν mass is so much smaller

than the other fermion masses. In fact, we would expect that the Yukawa couplings of all

fermions are roughly of the same order. This would lead to neutrino masses roughly of the

same size as the masses of the other leptons, obviously in sharp contrast to observations.

However, the very special properties of the right-handed neutrinos allow us to write down

yet another term in the Lagrangian. Recall that we want to write down the most general

gauge invariant Lagrangian, given the gauge group and the matter content. In fact, since νR

is a singlet under all gauge transformations, we can (or even have to) add a term like

MνRνR + h.c. . (7.30)



Note that for this term to be gauge invariant it is mandatory that Y (νR) = 0 and that νR

neither couples to SU(2) nor SU(3) gauge bosons.

This is a Majorana mass term, but its fermion index contraction is perhaps unclear, so let

us consider this with some care:

• The Dirac mass for a four-component spinor is of the form

mDψ̄ψ = mDψ
†γ0(P

2
L + P 2

R)ψ = mD(ψRψL + ψLψR) . (7.31)

So to get a Lorentz scalar, a left-handed two-component fermion must be contracted

with a rigth-handed two-component fermion.

• Recall that the antiparticle of a chiral fermion has opposite chirality from the particle:

1) The negative energy solutions of momentum ~p became the positive energy solutions

of −~p.
2) For a massless (= chiral) particle, helicity = chirality, and helicity is ~s · ~p, so the

antiparticle has opposite chirality from the particle.

In analogy with the Dirac mass term, one could try to write a mass term between the chiral

ψL and its antiparticle as

m (ψL)c ψL + h.c. . (7.32)

One should take care with such expressions in the literature, because the operations −, C

and PL do not commute, and different authors perform them in different order. Eq. (7.32) is

a Lorentz scalar and can also be expressed as mψTL iσ2ψL and is often written as mψLψL,

with the index contraction understood. This is the notation of eq. (7.30).

Whereas mD is expected to be of the same size as charged-lepton masses, the most natural

value for M is much larger. Ultimately we expect that at a high energy scale (maybe the

GUT scale M ∼ 1015 GeV) there is a theory that explains all of the fermion masses. Then,

the natural value for the fermion masses is of the order M . However, all fermion masses

except for the νR are ‘protected’ by chiral symmetry. This explains why mD ≪ M . To

understand the consequences of M ≫ mD consider the neutrino mass matrix

(
(νL)c νR

)

 0 mD

mD M




 νL

(νR)c


 . (7.33)

In order to get the masses of the physical particles, i.e. the eigenstates of the mass matrix,

we have to diagonalize this matrix. The eigenvalues are approximately given by

m2
D

M
and M , (7.34)



where we used mD ≪ M . Thus we can see that the physical neutrinos are a (nearly)

left-handed neutrino with mass m2
D/M and a (nearly) right-handed neutrino with mass M .

Taking mD ∼ mt and M ∼ 1015 GeV, we get m ∼ 0.03 eV, which is not too far from the

measured atmospheric mass difference. This may serve as an explanation as to why the mass

of the left-handed neutrino is so much smaller than the mass of the other leptons.

If this explanation is correct, then there should also be very heavy (nearly sterile) right-

handed neutrinos. If they have GUT-scale masses, they may not be interesting for collider

experiments, but they can be relevant in cosmology. If the νR are produced in the universe

after inflation, they could produce a lepton asymmetry in their decay. The Standard Model

has non-perturbative B+L violating interactions, which are rapid at temperatures T > mW ,

which would partially transform this lepton asymmetry into a baryon asymmetry. This

scenario, called leptogenesis, appears to work (it may require CP violation beyond the SM)

and adds to the attraction of the seesaw model.

7.4 Summary

• When neutrino masses are included in the Lagrangian, mixing angles appear at the

charged current vertex, as in the quark case.

• The experimental signature of (small) neutrino masses is oscillations: a neutrino pro-

duced from one flavour of charged lepton, can be detected by the appearance of a

different charged lepton. Thus, an electron neutrino produced in the sun can arrive as

a neutrino of a different flavour on earth.

• If the neutrinos travel through matter rather than the vacuum the oscillation pattern

can change dramatically.

• The see-saw mechanism provides us with an explanation of why the neutrino masses

are so much smaller than the other lepton masses.



8 Supersymmetry

This is the only section truly beyond the Standard Model. However, supersymmetry (SUSY)

plays an important role in particle physics phenomenology, so in this section we will outline

the basic ideas of this new symmetry, why so many theorists like it and sketch how to

‘supersymmetrise’ the Standard Model.

Supersymmetry is a big topic, and this is a short lecture. There are books and review

articles for readers of all tastes. In preparing this lecture, I have used, among others, a

phenomenological introduction by S. Martin, hep-ph/9709356 (∼ 100 pages) — which uses

the space-time metric (−,+,+,+), and also a review of physics beyond the Standard Model

(BSM) by M. Peskin, hep-ph/9705479.

8.1 Why Supersymmetry?

We have learned from LEP and other experiments that loop calculations work. This is a

shining success for the Standard Model: we calculate, as a function of a few input parameters,

quantum corrections to many (precision) observables, and what is measured agrees very well

with the calculations. Nevertheless, there are several arguments as to why the Standard

Model is probably not valid for energies up to the GUT scale.

First of all, the Standard Model requires a ‘light’ Higgs boson of mass ∼ 100 GeV. However, if

one calculates loop corrections to the Higgs boson mass, they are “quadratically divergent”,

that is proportional to Λ2
NP where ΛNP is the scale of New (BSM) Physics. There are various

conclusions that one can draw: there is new physics close to the electroweak scale that does

not contribute visibly in the precision observables of LEP, or the loop contributions cancel

against each other, or the Higgs mass in the Lagrangian has just the right value to cancel the

quadratic divergences (this is called “fine tuning”, and unpopular not only among theorists).

We will see that supersymmetry is a combination of the first and the second solution.

Secondly, the running of the gauge couplings indicates that, at a very high energy scale, the

strong, electromagnetic and weak interactions may combine into one unified force, with one

unique coupling strength. Within the SM, this GUT scenario does not quite work, but it can

be achieved within supersymmetric extensions due to the additional particle content which

contributes to the running of the couplings.

Thirdly, even though the SM works amazingly well in the sector of electroweak precision

observables, one of the most precise tests of all fails by about 3.4 σ. The measurement of the

anomalous magnetic moment of the muon, g−2, from BNL, is larger than the SM prediction.



This discrepancy could well be solved within supersymmetry, but less easily (or not at all)

in other extensions of the SM.

In addition to the above arguments, SUSY could also supply a much sought after dark matter

candidate, e.g. with the neutralino as the lightest stable neutral SUSY particle.

In the following we will give a brief introduction into the formalism and consequences of

SUSY.

Supersymmetry is a transformation which turns bosons into fermions, and fermions into

bosons. If it is a symmetry of the Lagrangian, then every fermion must have a bosonic

partner and vice versa, and the interactions are restricted by the symmetry. When we

supersymmetrise (exactly) the Standard Model, we will therefore (more than) double the

number of particles — but the number of coupling constants stays (almost) the same.

Exercise 8.1

Consider the interaction Lagrangian

L = yfH(tLtR + tRtL) +
y2
s

2
H2(T1T

∗
1 + T2T

∗
2 )

where tL, tR are chiral fermions (the top?), H is a real scalar and T1 and T2

are complex scalars.

• Draw the Feynman diagrams for the one-loop contributions to the Higgs

mass from t, T1 and T2.

• Using Feynam rules from the lectures, calculate the leading (= most diver-

gent) part of the diagrams at zero external momentum.

• Find a desirable relation between yf and yS, such that the divergences can-

cel.

• Now include soft scalar masses

δL = m2
T (T1T

∗
1 + T2T

∗
2 ) ,

take the supersymmetric relation that you have found between yf and ys, and

estimate the same one-loop diagrams.

8.2 A New Symmetry: Boson ↔ Fermion

Recall that a symmetry, be it local gauge, or global like Poincaré, is defined by operators

which generate the transformations under which the Lagrangian transforms to itself, plus a

total divergence. These operators are called generators.



We are looking for an operator Q, acting on bosons |b〉 and fermions |f〉 such that

Q|b〉 = |f〉, Q|f〉 = |b〉 . (8.1)

Bosons have even spin and mass dimension (where I am counting the mass dimension of

a field in four dimensions), fermions have odd spin and mass dimension, so we conclude

that the operator Q should have spin 1/2 and mass dimension 1/2. And since it transforms

bosons into fermions, and fermions into bosons, our supersymmetric Lagrangian should have

exactly the same number of fermionic and bosonic degrees of freedom. So there is a complex

scalar for every chiral fermion, a chiral fermion for each massless vector, and fundamental

real scalars are not allowed.

Since Q is a fermion, it should have a spinor index. By statistics and dimensional analysis,

we can imagine it acting on fields (operators) as

[Qα, φ] ∼ ψα ,

{Qα, ψ} ∼ ∂µφ+mφ+ gφ2, . . . Aµ .
(8.2)

It is clear that Qα changes spin, so mixes into the Poincaré group of translations and

rotations. It can be shown that there is one way, and only one way, of extending the

commutation relations of the Poincaré group (Haag-Lopuszanski-Sohnius extension of the

Coleman-Mandula theorem). And this extension is supersymmetry, with the properties we

were looking for above. More precisely, one may introduce fermionic generators Qα, in ad-

dition to the bosonic symmetry generators (Pµ for translations and Mµν for proper Lorentz

transformations), which satisfy the following algebra:

{Qα,Qβ} = 2σµαβPµ , (8.3)

{Qα,Qβ} = {Qα,Qβ} = 0 , (8.4)

[Qα,Pµ] = 0 , (8.5)

[Qα,Mµν ] = i (σµν)
β
α Qβ . (8.6)

The labels α and β are spinor indices taking the values 1 and 2, the bar denotes conjugation

and the algebra involves anticommutators and commutators. Another important point to

note is that in eqs. (8.3), (8.5) and (8.6) the new generators mix with the other Poincaré

generators.

A theory is supersymmetric if it is invariant under the group of transformations generated

by Pµ, Mµν and Qα.

In such a theory, for every bosonic state there is a fermionic state with the same energy, and

vice-versa. This follows directly from the fact that the Hamiltonian (P0) commutes with Q.



Another interesting feature is that the cosmological constant vanishes: the Hamiltonian is

bounded from below and the ground state has zero energy (if SUSY is not spontaneously

broken). To understand this we simply have to note that since σ0 is equal to the unit matrix

and P0 is the Hamiltonian, eq. (8.3) entails

{Qα,Qβ} = 2δαβH . (8.7)

From this we conclude for an arbitrary state |ψ〉

〈ψ|H|ψ〉 = 〈ψ|QQ|ψ〉 = ‖Q|ψ〉‖ ≥ 0 . (8.8)

At the same time we see that

〈ψ|H|ψ〉 = 0 ⇔ Q|ψ〉 = 0 , (8.9)

which is precisely the condition for SUSY not to be spontaneously broken (see eq. (4.18)).

8.3 The Supersymmetric Harmonic Oscillator

In this subsection we will consider the simplest supersymmetric model and convince ourselves

that this model indeed has all the nice properties we expect.

Let us start with the usual (bosonic) harmonic oscillator. The Hamiltonian is given by

HB =
1

2

(
p2 + ω2

B x
2
)
. (8.10)

If we define creation and annihilation operators

a ≡ 1√
2ωB

(p− iωBx) , a+ ≡ 1√
2ωB

(p+ iωBx) , (8.11)

then the canonical commutation relation [p, x] = −i entails the usual commutation relations

for the creation and annihilation operators

[a, a+] = 1 , [a, a] = [a+, a+] = 0 . (8.12)

If we write the Hamiltonian eq. (8.10) in terms of the creation and annihilation operators,

we get

HB =
ωB
2

(
a+ a + a a+

)
= ωB

(
NB +

1

2

)
, (8.13)

where we have defined the counting operator NB ≡ a+ a. The energy spectrum of this

Hamiltonian (i.e. its eigenvalues) is given by

EnB
= ωB

(
nB +

1

2

)
with nB = 0, 1, 2, 3, . . . . (8.14)



A point to note is that the ground state energy E0 is 1/2 and not 0. In a quantum field

theory this leads to the problem with infinite ground state energy. This problem is solved

by normal ordering.

Let us now repeat these steps for a fermionic harmonic oscillator. We introduce fermionic

creation and annihilation operators b and b+. They satisfy

{b, b+} = 1 , {b, b} = {b+, b+} = 0 . (8.15)

These relations correspond to eq. (8.12). However, since we are dealing with fermionic

operators now, the commutators are replaced by anticommutators. In analogy to eq. (8.13)

we write the Hamiltonian of the fermionic harmonic oscillator as

HF =
ωF
2

(
b+ b− b b+

)
= ωF

(
NF − 1

2

)
, (8.16)

where we have introduced another counting operator, NF ≡ b+ b. Note that there is a relative

minus sign between the b+ b and b b+ term. This sign is due to the fermionic nature of the

creation and annihilation operators.

The energy spectrum of this Hamiltonian is given by

EnF
= ωF

(
nF − 1

2

)
with nF = 0, 1 . (8.17)

Note that contrary to eq. (8.14), nF can only take the values 0 or 1. This is a reflection of

Pauli’s exclusion principle in that there cannot be two fermions in the same state.

If we wish we can find an explicit representation of the creation and annihilation operators

in terms of Pauli matrices,

b = σ1 − iσ2 =


 0 0

1 0


 ,

b+ = σ1 + iσ2 =


 0 1

0 0


 . (8.18)

In this representation the Hamiltonian eq. (8.16) is given by

HF =
ωF
2
σ3 =


 1 0

0 −1


 , (8.19)

and we see that the eigenvalues of HF are indeed ±ωF/2 as given in eq. (8.17).

Now we are ready to combine the fermionic and the bosonic harmonic oscillator. If we just

add the two, we do not increase the symmetry of the theory. In order to do this we also have



to require ωB = ωF ≡ ω. Only in this case do we end up with a supersymmetric model. The

Hamiltonian then is

H ≡ HB +HF

∣∣∣
ωB=ωF≡ω

=
ω

2

(
a+ a+ a a+ + b+ b− b b+

)
= ω

(
a+ a + b+ b

)
. (8.20)

First of all we naively see that H has an additional symmetry a ↔ b. A state is now

determined by two quantum numbers nB and nF , and the energy spectrum is

EnB,nF
= ω (nB + nF ) with nB = 0, 1, 2, 3, . . . , nF = 0, 1 . (8.21)

Note that the ground state energy is E0,0 = 0. Thus as advertised above, the ground state

has zero energy. This is simply because the bosonic ground state energy +1/2 and the

fermionic ground state energy −1/2 cancel.

The other feature mentioned before, namely that the states appear in pairs (a fermionic

and a bosonic state) with the same energy can be seen from eq. (8.21). Indeed, the states

|nB, nF = 0〉 and |nB − 1, nF = 1〉 have the same energy. Furthermore |nB, nF = 0〉 is a

bosonic state (integer spin), whereas |nB−1, nF = 1〉 is a fermionic state (half-integer spin).

8.4 Supercharges

In this subsection we want to look at the symmetry found in subsection 8.2 in a somewhat

more formal way.

Through the Noether theorem, a symmetry is related to a conserved current and a conserved

charge. Thus, in a supersymmetric theory there is a conserved supercurrent and a conserved

supercharge. It is the latter that generates the transformations and we denote it by Q. Since

it is conserved it has to commute with the Hamiltonian.

For the supersymmetric harmonic oscillator the supercharge is given by

Q1 =
√
ω
(
a+ b+ a b+

)
, Q2 = i

√
ω
(
a+ b− a b+

)
, (8.22)

where, as mentioned after eq. (8.3), Q has a spinor index. We now show that the supercharges

as defined in eq. (8.22) have the desired properties. Using the (anti-) commutation rules for

the creation and annihilation operators, eqs. (8.12) and (8.15), we can compute

{Q1,Q1} = ω{a+ b+ a b+, a+ b+ a b+}
= ω{a+ b, a b+} + ω{a b+, a+ b}
= 2ω

(
a+ a (1 − b+ b) + (1 + a+ a) b+ b

)

= 2ω(a+ a+ b+ b) = 2H . (8.23)



In a similar way we can compute the remaining anticommutators of Q1 and Q2, and we get

{Q1,Q1} = {Q2,Q2} = 2H , {Q1,Q2} = 0 . (8.24)

Note that this is in agreement with eq. (8.7). Now we can see that, as promised, the

supercharge is conserved:

[Q1,H] =
[
Q1, (Q1)

2
]

= 0 , (8.25)

[Q2,H] =
[
Q2, (Q2)

2
]

= 0 . (8.26)

Eqs. (8.25) and (8.26) allow us to see that the states in this theory come in pairs. In fact,

let |Ψ〉 be an eigenstate of H, i.e. H|Ψ〉 = EΨ|Ψ〉. Then Q1|Ψ〉 is an eigenstate of H with

the same energy,

HQ1|Ψ〉 = Q1H|Ψ〉 = Q1EΨ|Ψ〉 = EΨQ1|Ψ〉 . (8.27)

If |Ψ〉 is a bosonic state containing nB bosons and no fermions, then

Q1|Ψ〉 = Q1|nB, 0〉 =
√
ω
(
a+ b+ a b+

)
|nB, 0〉 = |nB − 1, 1〉 (8.28)

is a fermionic state with the same energy. Similarly, if |Ψ〉 = |nB, 1〉 is a fermionic state,

then Q1|Ψ〉 = |nB + 1, 0〉 is a bosonic state with the same energy. Thus the states come

indeed in pairs with the same energy, one fermionic and one bosonic.

Of course, the same argument could have been made with Q2 rather than with Q1. However,

Q2 acting on a state |Ψ〉 produces the same state as Q1 acting on a state |Ψ〉. Thus, there

are not four but only two states with the same energy.

What we have seen is that if we start with the usual bosonic harmonic oscillator and want to

make this theory supersymmetric, then we are led to introduce for every bosonic (fermionic)

state a fermionic (bosonic) state with the same energy. This is exactly what happens if we

want to make the Standard Model supersymmetric: For each boson (fermion) we have to

introduce a fermionic (bosonic) partner, thereby doubling the particle spectrum.

8.5 Superfields

The superfield is a very convenient piece of SUSY notation, which rests on the abstract

idea of supersymmetrising space-time. Suppose that for the four (bosonic) dimensions we

know, that is x, y, z and t, we add a pair of fermionic dimensions η and η̄. The SUSY

transformations Q and Q̄ are translations in the fermionic directions of this “superspace”.

Being η and η̄ fermions, they anticommute with themselves, so the Taylor expansion in these

fermionic dimensions ends quickly!



The superfield associated with, say, the Higgs, is a function of superspace:

H(xµ, η) = H(xµ) + η h(xµ) + η η F (xµ) . (8.29)

H is an example of a (left-handed) “chiral superfield”, a simple sort of superfield that is

independent of η̄, suitable for decribing a matter multiplet made of a left-handed fermion

and complex scalar. By a standard abuse of notation, the superfield has the same symbol as

its scalar component. So on the RHS of the equality, H is the scalar Higgs, h is the higgsino,

and F is a bosonic field of mass dimension two, which therefore cannot have kinetic terms

and can be removed from the Lagrangian by using its equations of motion (something like

a Lagrange multiplier). We make no more mention of F , other than to note that it is the

origin of calling part of the SUSY Lagrangian “F-terms”.

The reason that superfields are convenient, is that one can compactly write all the SM

Yukawa interactions, and their supersymmetric relatives (of which there are very many), as

the “superpotential”:

W = YeHdLE
c + YνHuLN

c + YdHdLD
c + YuHuLU

c . (8.30)

For simplicity, let us consider only one generation. Yf is the Yukawa coupling for fermion

f , and the right-handed fermions (e.g. eR) have been written as left-handed anti-particles

(ec). Notice that there are two physically distinct Higgs doublets Hu and Hd, where in the

SM we have used one doublet and its charge conjugate. We will return later to the reason

for this extra field.

To obtain supersymmetric interactions of component fields, in ordinary four-dimensional

space, one should extract the F-term of W . That is, expand each field as in eq. (8.29) and

pick out all the terms ∝ η2. It is clear that this will include the SM Yukawa couplings,

because each fermion comes with an η. It also gives scalar four point interactions. The full

expression is

LSSM = kinetic terms +
∑

ij

∂2W

∂Φi∂Φj

ψiψj −
∑

k

|∂W
∂Φi

|2

= . . .+ YeHdℓe
c + . . .− |Ye|2(HdL)(HdL)∗ − . . . , (8.31)

where i, j, k run over all the superfields in W , and on the second line are the parts coming

from derivatives with respect to Ec. The fermion index contraction is in the same shorthand

as eq. (7.30). The kinetic terms and gauge interactions come from another function of the

superfields.

It is possible to draw diagrams and do calculations in superspace; this can be useful for

obtaining exact supersymmetric cancellations.



8.6 The MSSM Particle Content (Partially)

The Lagrangian for the Minimal Supersymmetric SM (MSSM) can be motivated as follows:

1. Add a boson for all SM fermions, and a fermion for all SM bosons.

2. “Supersymmetrise” the SM Feynman diagrams.

3. Observe that step 2 gave superpartners with the same masses as their SM relatives.

As we have not observed any superpartners, add “SUSY breaking” mass terms to

make them heavier than current experimental sensitivities. (These masses are called

“soft” because the quadratic divergences still cancel — as you have discovered in the

problem.)

This heuristic recipe will give a Lagrangian with ∼ 125 free parameters, compared to 19 in

the SM. The vast majority of the additional parameters come in the SUSY breaking sector

and make the theory unwieldy to study. It is therefore common to work within simplified

SUSY breaking scenarios with fewer parameters, like e.g. mSUGRA, the minimal version

of supergravity grand unification. In this model universality of the soft SUSY breaking

parameters is assumed (there are only four additional new parameters plus one sign), leading

to a suppression of flavour changing neutral currents.

In this subsection we restrict outselves to the first step outlined above, describing the particle

content of the MSSM. Feynman rules can be found elsewhere.

Superpartners are often written as capitalised, or “tilded” SM particles. The partners of

one generation of SM leptons are a slepton doublet, a singlet selectron and a “right-handed”

sneutrino:

ℓ =


 eL

νL


 → ℓ̃ =


 ẽL

ν̃L


 or L =


 EL

NL


 ,

ec → ẽc or Ec ,

(νR)c → (̃νcR) or N c ,

(8.32)

and sometimes, abusively, the c is dropped from the singlets, although they remain “left-

handed”. Similarly, one introduces squark partners, of all colours and flavours, for the

quarks.

The spartners of the SM bosons are the “-inos”, who can be names according to whether

they are added before (Bino and three Winos) or after (Photino, Zino and two Winos)



spontaneous symmetry breaking:

γ → γ̃ ,

Z → z̃ or z ,

W± → w̃± or w± ,

H =


 H+

H0


 → h̃u =


 h̃+

u

h̃0
u


 .

(8.33)

In supersymmetry, we need a second Higgs doublet. One can see this from the formal

structure of the theory, or from considerations of anomaly cancellation, or by counting

fermionic degrees of freedom. Let us do the last: Suppose we break the electroweak gauge

symmetry in an exactly supersymmetric SM. The spartners must therefore have the same

masses as the SM particles, and notice in the SM after spontaneous symmetry breaking,

there are no massless charged bosons. However, among the inos in eq. (8.33), there are three

chiral charged fermions, and it takes two chiral fermions to make a massive charged “Dirac”

fermion (a Majorana mass would break charge conservation). The solution to this problem

is to add a second Higgs,

Hd =


 H0

H−


 → h̃d =


 h̃0

d

h̃−d


 (8.34)

which gives mass to the d quarks and charged leptons.

Recall that we must add soft masses for all these new fermions, to ensure that they should

not have been discovered yet, so the physical mass eigenstates will be four neutralinos and

two (four component fermion) charginos, respectively linear combinations of γ̃, z̃, hu and hd,

and w̃±, h+
u , h

−
d .

8.7 Summary

• Supersymmetry transforms bosons ↔ fermions. It is an (the only possible) extension

of the Poincaré algebra.

• Since fermion loops come with a relative minus sign, the Higgs mass would have no

quadratic divergence in an exactly supersymmetric theory.

• To supersymmetrise the SM, one has to add a boson (sfermion) for every fermion, and

a fermion (-ino) for every boson. Then one adds a second Higgs doublet and its SUSY

partners.

• No spartners have been observed so far, so one gives them masses in excess of current

experimental bounds. This breaks the supersymmetry, and allows finite corrections to

the Higgs mass.



• At the time of writing this sentence, supersymmetry has not been found.
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