Phenomenology at collider experiments [Part 5: MC generators]

Frank Krauss

IPPP Durham

HEP Summer School 31.8.-12.9.2008, RAL

MC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upshot

Outline

- Orientation
- Monte Carlo integration
- Reminder: Hard cross sections
- 4 Reminder: Parton showers
- 5 Hadronization
- 6 Underlying Event
- 7 Upshot

MC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upshot

Simulation's paradigm

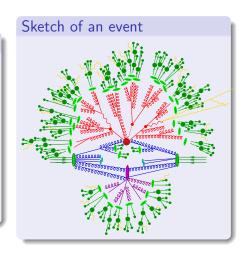
Basic strategy

Orientation

Divide event into stages, separated by different scales.

- Signal/background:
 Exact matrix elements.
- QCD-Bremsstrahlung:
 - Parton showers (also in initial state).
- Multiple interactions:
 Beyond factorization: Modeling.
- Hadronization:

Non-perturbative QCD: Modeling.



IPPP

Monte Carlo integration

Convergence of numerical integration

- Consider $I = \int_{0}^{1} \mathrm{d}x^{D} f(\vec{x})$.
- Convergence behavior crucial for numerical evaluations. For integration (N = number of evaluations of f):
 - Trapezium rule $\simeq 1/N^{2/D}$
 - Simpson's rule $\simeq 1/N^{4/D}$
 - Central limit theorem $\simeq 1/\sqrt{N}$.
- Therefore: Use central limit theorem.

Monte Carlo integration

Monte Carlo integration

• Use random vectors $\vec{x}_i \longrightarrow$: Evaluate estimate of the integral $\langle I \rangle$ rather than I.

$$\langle I(f)\rangle = \frac{1}{N}\sum_{i=1}^{N}f(\vec{x}_i).$$

(This is the original meaning of Monte Carlo: Use random numbers for integration.)

- Quality of estimate given by error estimator (variance) $\langle E(f) \rangle^2 = \frac{1}{N-1} \left[\langle I^2(f) \rangle - \langle I(f) \rangle^2 \right].$
- Name of the game: Minimize $\langle E(f) \rangle$.
- Problem: Large fluctuations in integrand f
- Solution: Smart sampling methods

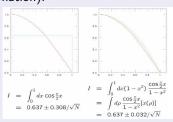
Monte Carlo integration

Importance sampling

Basic idea: Put more samples in regions, where f largest

improves convergence behavior (corresponds to a Jacobian transformation).

- Assume a function $g(\vec{x})$ similar to $f(\vec{x})$;
- obviously then, $f(\vec{x})/g(\vec{x})$ is comparably smooth, hence $\langle E(f/g) \rangle$ is small.



Monte Carlo integration

Stratified sampling

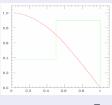
Basic idea: Decompose integral in M sub-integrals

$$\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle, \quad \langle E(f) \rangle^2 = \sum_{j=1}^{M} \langle E_j(f) \rangle^2$$

Then: Overall variance smallest, if "equally distributed".

⇒ Sample, where the fluctuations are.

- Divide interval in bins;
- adjust bin-size or weight per bin such that variance identical in all bins.



$$\langle I \rangle = 0.637 \pm 0.147 / \sqrt{N}$$

Upshot

Monte Carlo integration

Example for stratified sampling: VEGAS

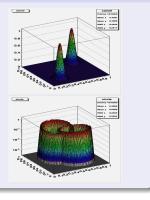
- Assume m bins in each dimension of \vec{x} .
- For each bin k in each dimension $\eta \in [1, n]$ assume a weight (probability) $\alpha_k^{(\eta)}$ for x_k to be in that bin.

Condition(s) on the weights:

$$\alpha_k^{(\eta)} \in [0, 1], \sum_{k=1}^m \alpha_k^{(\eta)} = 1.$$

- For each bin in each dimension calculate $\langle I_{k}^{(\eta)} \rangle$ and $\langle E_{k}^{(\eta)} \rangle$. Obviously, for all η , $\langle I \rangle = \sum_{k=1}^{m} \langle I_k^{(\eta)} \rangle$, but error estimates different.
- In each dimensions, iterate and update the $\alpha_k^{(\eta)}$; example for updating: $\alpha_k^{(\eta)}(\text{rm new}) \propto \alpha_k^{(\eta)}(\text{rm old}) \left(\frac{E_k^{(\eta)}}{E_{\text{tot.}}(\eta)}\right)^{\kappa}.$

Problem with this simple algorithm: Gets a hold only on fluctuations || to binning axes.



Monte Carlo integration

Multichannel sampling

Basic idea: Use a sum of functions $g_i(\vec{x})$ as Jacobian $g(\vec{x})$.

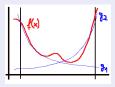
$$\implies$$
 $g(\vec{x}) = \sum_{i=1}^{N} \alpha_i g_i(\vec{x});$

⇒ condition on weights like stratified sampling;

("Combination" of importance & stratified sampling).

Algorithm for one iteration:

- Select g_i with probability α_i → x̄_i.
- Add $f(\vec{x}_i)/g(\vec{x}_i)$ to total result and $f(\vec{x}_i)/g_i(\vec{x}_i)$ to partial (channel-) results.
- After N sampling steps, update a-priori weights.



This is the method of choice for parton level event generation!

MC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Up

Monte Carlo integration

Selecting after sampling: Unweighting efficiency

Basic idea: Use hit-or-miss method; Generate \vec{x} with integration method, compare actual $f(\vec{x})$ with maximal value during sampling; \implies "Unweighted events".

Comments:

- unweighting efficiency, $w_{eff} = \langle f(\vec{x}_i)/f_{max} \rangle = \text{number of trials for each event.}$
- Good measure for integration performance.
- ullet Expect $\log_{10}w_{
 m eff}pprox 3-5$ for good integration of multi-particle final states at tree-level.
- Maybe acceptable to use f_{max,eff} = Kf_{max} with K < 1.</p>
 Problem: what to do with events where f(x̄_j)/f_{max,eff} > 1?
 Answer: Add int[f(x̄_j)/f_{max,eff}] = k events and perform hit-or-miss on f(x̄_j)/f_{max,eff} k.

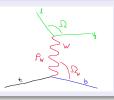
Monte Carlo integration

Particle physics example: Evaluation of cross sections

Simple example: $t \rightarrow bW^+ \rightarrow b\bar{l}\nu_l$:

$$\left|\mathcal{M}\right|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{\rho_t \cdot \rho_\nu \ \rho_b \cdot \rho_l}{(\rho_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

 $\begin{array}{l} \bullet \quad \text{Phase space integration (5-dim)} \\ \Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d}\rho_W^2 \frac{\mathrm{d}^2\Omega_W}{4\pi} \, \frac{\mathrm{d}^2\Omega}{4\pi} \left(1 - \frac{\rho_W^2}{m_t^2}\right) \left|\mathcal{M}\right|^2 \end{array}$



Advantages

- Throw 5 random numbers, construct four-momenta (⇒ full kinematics, "events")
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Parton level simulations

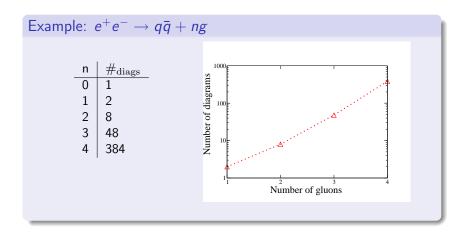
Stating the problem(s)

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int\limits_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i q_i \right) \left| \mathcal{M}_{p_1 p_2 \to N} \right|^2.$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

Factorial growth



C integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upshot

Phase space integration

Integration methods: Multi-channeling

Basic idea: Translate Feynman diagrams into channels

 \implies decays, s- and t-channel props as building blocks.

R.Kleiss and R.Pittau, Comput. Phys. Commun. 83 (1994) 141

Integration methods: "Democratic" methods

Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling and S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359,

HAAG: Follows QCD antenna pattern

A.van Hameren and C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

Limitations of parton level simulation

Factorial growth

• ... persists due to the number of color configurations

```
(e.g. (n-1)! permutations for n external gluons).
```

- Solution: Sampling over colors,
 - but correlations with phase space
 - ⇒ Best recipe not (yet) found.
- New scheme for color: color dressing

```
(C.Duhr, S.Hoche and F.Maltoni, JHEP 0608 (2006) 062)
```


Upshot

C integration **Reminder: ME's** Reminder: QCD showers Hadronization Underlying Event Upsl

Limitations of parton level simulation

Factorial growth

• Off-shell vs. on-shell recursion relations:

Final State	BG		BCF		CSW	
	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6g	14.2	7.19	11.9	59.1	27.8	30.6
7g	58.5	23.7	73.6	646	146	195
8g	276	82.1	597	8690	919	1890
9g	1450	270	5900	127000	6310	29700
10g	7960	864	64000	340	48900	-

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & color.

Limitations of parton level simulation

Efficient phase space integration

- Main problem: Adaptive multi-channel sampling translates "Feynman diagrams" into integration channels
 - ⇒ hence subject to growth.
- But it is practical only for 1000-10000 channels.
- Therefore: Need better sampling procedures question with little activity.

(Private suspicion: Lack of glamour)

Limitations of parton level simulation

General

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level
 experimental definition of observables relies on hadrons.

Therefore: Need hadron level event generators!

Motivation: Why parton showers?

Some more refined reasons

- Experimental definition of jets based on hadrons.
- But: Hadronization through phenomenological models

(need to be tuned to data).

Wanted: Universality of hadronization parameters

(independence of hard process important).

Link to fragmentation needed: Model softer radiation

(inner jet evolution).

• Similar to PDFs (factorization) just the other way around (fragmentation functions at low scale,

parton shower connects high with low scale).

• Practical: In MC's typically start with $2 \rightarrow 2$ process

(Further jets from QCD shower)

(This approximation has been overcome only \approx 5 years ago!)

Motivation: Why parton showers?

Common wisdom

- Well-known: Accelerated charges radiate
- QED: Electrons (charged) emit photons
 Photons split into electron-positron pairs
- QCD: Quarks (colored) emit gluons Gluons split into quark pairs
- Difference: Gluons are colored (photons are not charged)
 Hence: Gluons emit gluons!
- Cascade of emissions: Parton shower

Upshot

The Sudakov form factor

• Diff. probability for emission between q^2 and $q^2 + dq^2$:

$$\mathrm{d}\mathcal{P} = rac{lpha_s}{2\pi} rac{\mathrm{d}q^2}{q^2} \int\limits_{Q_0^2/q^2}^{1-Q_0^2/q^2} \mathrm{d}z P(z) =: rac{\mathrm{d}q^2}{q^2} ar{P}(q^2) \,.$$

• No-emission probability $\Delta(Q^2, q^2)$ between Q^2 and q^2 .

Evolution equation for Δ : $-\frac{\mathrm{d}\Delta(Q^2,q^2)}{\mathrm{d}q^2} = \Delta(Q^2,q^2)\frac{\mathcal{P}}{\mathrm{d}q^2}$.

$$\implies \Delta(Q^2, q^2) = \exp\left[-\int\limits_{q^2}^{Q^2} rac{dk^2}{k^2} \, ar{P}(k^2)
ight] \, .$$

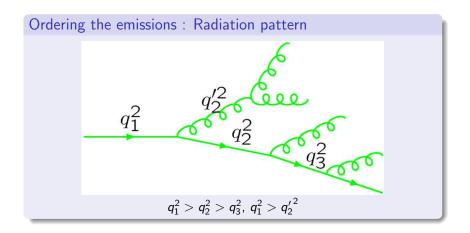
Many emissions

Iterate emissions (jets)

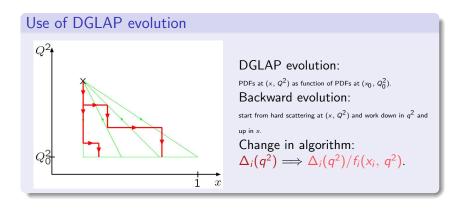
Maximal result for $t_1 > t_2 > \dots t_n$:

$$\mathrm{d}\sigma \propto \sigma_0 \int\limits_{Q_0^2}^{Q^2} \frac{\mathrm{d}t_1}{t_1} \int\limits_{Q_0^2}^{t_1} \frac{\mathrm{d}t_2}{t_2} \dots \int\limits_{Q_0^2}^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n} \propto \log^n \frac{Q^2}{Q_0^2}$$

• How about Q²? Process-dependent!



Forward vs. backward evolution: Pictorially vs. vs.



Inclusion of quantum effects

Resummed jet rates in $e^+e^- \rightarrow \text{hadrons}$

S.Catani et al. Phys. Lett. B269 (1991) 432

• Use Durham jet measure $(k_{\perp}$ -type):

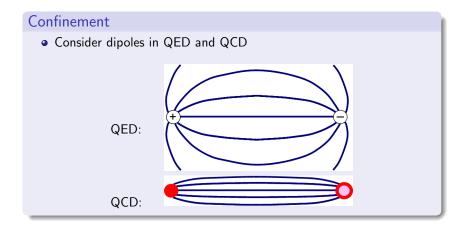
$$k_{\perp,ij}^2 = 2 {\rm min}(E_i^2,\; E_j^2) (1-\cos\theta_{ij}) > Q_{\rm jet}^2 \; . \label{eq:kpi}$$

Remember prob. interpret. of Sudakov form factor:

$$\begin{split} \mathcal{R}_{2}(Q_{\mathrm{jet}}) &= \left[\Delta_{q}(E_{\mathrm{c.m.}}, Q_{\mathrm{jet}})\right]^{2} \\ \mathcal{R}_{3}(Q_{\mathrm{jet}}) &= 2\Delta_{q}(E_{\mathrm{c.m.}}, Q_{\mathrm{jet}}) \\ &\cdot \int \mathrm{d}q \left[\alpha_{s}(q)\tilde{P}_{q}(E_{\mathrm{c.m.}}, q) \frac{\Delta_{q}(E_{\mathrm{c.m.}}, Q_{\mathrm{jet}})}{\Delta_{q}(q, Q_{\mathrm{jet}})} \Delta_{q}(q, Q_{\mathrm{jet}}) \Delta_{g}(q, Q_{\mathrm{jet}})\right] \end{split}$$

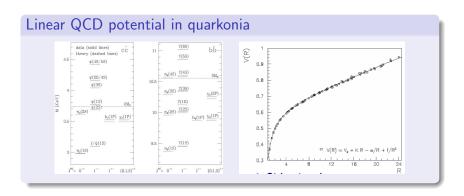
MC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upsho

Hadronization



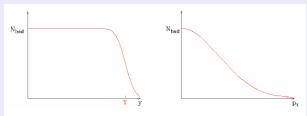
Underlying Event Upshor

Hadronization



Some experimental facts \rightarrow naive parameterizations

• In $e^+e^- \to \text{hadrons}$: Limits p_\perp , flat plateau in y.



• Try "smearing": $\rho(p_{\perp}^2) \sim \exp(-p_{\perp}^2/\sigma^2)$

Effect of naive parameterizations

• Use parameterization to "guesstimate" hadronization effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp \, \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp \, \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp = \langle \rho_\perp \rangle \; . \end{split}$$

- Estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- Effect: Jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \text{GeV})$) for jets with energy $\mathcal{O}(100 \text{GeV})$).

Implementation of naive parameterizations

Feynman-Field independent fragmentation.

R.D.Field and R.P.Feynman, Nucl. Phys. B 136 (1978) 1

- Recursively fragment $q \rightarrow q' + \text{had}$, where
 - Transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavor from symmetry arguments + measurements.
- Problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

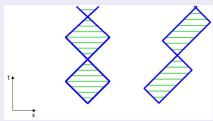
MC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upshot

Hadronization

Yoyo-strings as model of mesons

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Light quarks connected by string: area law $m^2 \propto area$.
- L=0 mesons only have 'yo-yo' modes:



Dynamical strings in $e^+e^- o q\bar{q}$

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Ignoring gluon radiation: Point-like source of string.
- Intense chromomagnetic field within string: More $q\bar{q}$ pairs created by tunnelling.
- Analogy with QED (Schwinger mechanism): $d\mathcal{P} \sim dxdt \exp\left(-\pi m_q^2/\kappa\right)$, $\kappa =$ "string tension".

MC integration Reminder: ME's Reminder: QCD showers **Hadronization** Underlying Event Upsho

Hadronization

Gluons in strings = kinks

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- String model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, . . .)
- Gluon = kinks on string? Check by "string-effect"

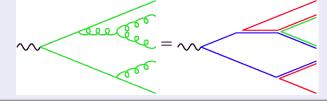
Infrared-safe, advantage: smooth matching with PS.

Cintegration Reminder: ME's Reminder: QCD showers **Hadronization** Underlying Event Upshot

Hadronization

Preconfinement

- Underlying: Large N_c -limit (planar graphs).
- Follows evolution of color in parton showers:
 at the end of shower color singlets close in phase space.
- Mass of singlets: peaked at low scales $\approx Q_0^2$.

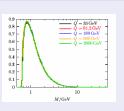


Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upshot

Hadronization

Primordial cluster mass distribution

- Starting point: Preconfinement;
- split gluons into qq̄-pairs;
- adjacent pairs color connected, form colorless (white) clusters.
- Clusters ("≈ excited hadrons) decay into hadrons



C integration Reminder: ME's Reminder: QCD showers **Hadronization** Underlying Event Upsho

Hadronization

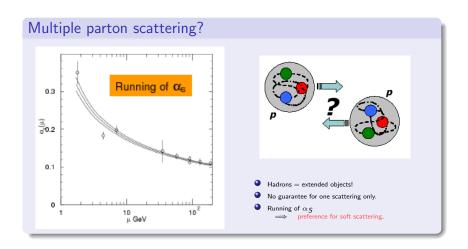
Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492

- Split gluons into $q\bar{q}$ pairs, form singlet clusters:
 - ⇒ continuum of meson resonances.
- Decay heavy clusters into lighter ones;
 (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- ullet if light enough, clusters \to hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).

Underlying Event Ups

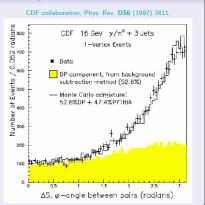
Underlying Event



Underlying Event

Evidence for multiple parton scattering

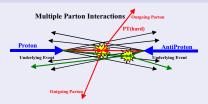
- Events with $\gamma + 3$ jets:
 - Cone jets, R=0.7, $E_T>5$ GeV; $|\eta_j|<1.3$;
 - "clean sample": two softest jets with E_T < 7 GeV;
- ullet $\sigma_{
 m DPS} = rac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{
 m eff}}, \ \sigma_{
 m eff} pprox 14 \pm 4$ mb.



AC integration Reminder: ME's Reminder: QCD showers Hadronization Underlying Event Upsl

Underlying Event

Definition(s)



- Everything apart from the hard interaction including IS showers, FS showers, remnant hadronization.
- Remnant-remnant interactions, soft and/or hard.

⇒ Lesson: hard to define

Underlying event

Model: Multiple parton interactions

To understand the origin of MPS, realize that

$$\sigma_{
m hard}(p_{\perp,
m min}) = \int\limits_{
ho_{\perp,
m min}^2}^{s/4} {
m d}
ho_{\perp}^2 rac{{
m d} \sigma(
ho_{\perp}^2)}{{
m d}
ho_{\perp}^2} > \sigma_{
ho
ho,
m total}$$

for low
$$p_{\perp,\min}$$
. Here: $\frac{\mathrm{d}\sigma(p_{\perp}^2)}{\mathrm{d}p_{\perp}^2} = \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\hat{t} f(x_1, q^2) f(x_2, q^2) \frac{\mathrm{d}\hat{\sigma}_2 \to 2}{\mathrm{d}p_{\perp}^2} \delta\left(1 - \frac{\hat{t}\hat{u}}{\hat{s}}\right)$

$$(f(x, q^2) = \mathsf{PDF}, \hat{\sigma}_2 \to 2 = \mathsf{parton-parton} \times \mathsf{sec})$$

- $\langle \sigma_{\mathrm{hard}}(p_{\perp,\mathrm{min}})/\sigma_{pp,\mathrm{total}} \rangle \geq 1$
- Depends strongly on cut-off $p_{\perp,\min}$ (Energy-dependent)!

Underlying event

Old Pythia model: Algorithm, simplified

T.Sjostrand and M.van Zijl, Phys. Rev. D 36 (1987) 2019

- Start with hard interaction, at scale Q_{hard}^2 .
- Select a new scale p_{\perp}^2 (according to $f = \frac{\mathrm{d}\sigma_{2 \to 2}(\rho_{\perp}^2)}{\mathrm{d}\rho_{\perp}^2}$ with $\rho_{\perp}^2 \in [\rho_{\perp, \min}^2, Q^2]$)
- Rescale proton momentum ("proton-parton = proton with reduced energy").
- Repeat until below $p_{\perp,\min}^2$.
- May add impact-parameter dependence, showers, etc...
- Treat intrinsic k_{\perp} of partons (\rightarrow parameter)
- Model proton remnants (→ parameter)

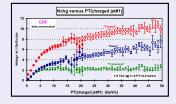
der: QCD showers Hadronization Underlying Event Upshot

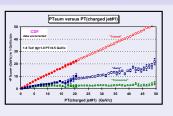
Underlying Event

In the following: Data from CDF, PRD 65 (2002) 092002, plots partially from C.Buttar

Reminder: ME's

Observables

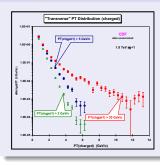


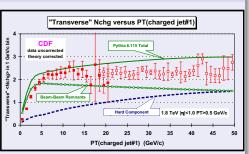


Underlying Event Upshot

Underlying event

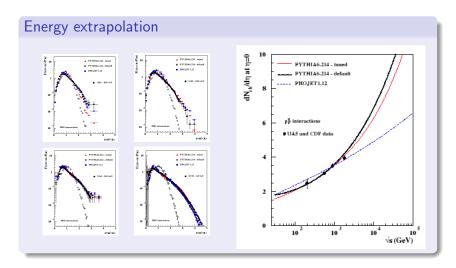
Hard component in transverse region





Underlying Event Upsho

Underlying event



Underlying event

General facts on current models

No first-principles approach for underlying event:

Multiple-parton interactions: beyond factorization

Factorization (simplified) = no process-dependence in use of PDFs.

- Models usually based on xsecs in collinear factorization: ${\rm d}\sigma/{\rm d}\rho_{\perp}\propto \rho_{\perp}^{4-8}\implies$ strong dependence on cut-off $\rho_{\perp}^{\rm min}$.
- "Regularization": $d\sigma/dp_{\perp} \propto (p_{\perp}^2 + p_0^2)^{2-4}$, also in α_S .
- Model for scaling behavior of $p_{\perp}^{\min}(s) \propto p_{\perp}^{\min}(s_0)(s/s_0)^{\lambda}$, $\lambda = ?$

Two Pythia tunes:
$$\lambda=0.16,\,\lambda=0.25.$$

- Herwig model similar to old Pythia and SHERPA
- New Pythia model: Correlate parton interactions with showers, more parameters.

To take home

Hard MEs

- Theoretically very well understood, realm of perturbation theory.
- Fully automated tools at tree-level available. $2 \rightarrow 6$ no problem at all.
- Obstacle(s) for higher multiplicities: factorial growth, phase space integration.
- NLO calculations much more involved, no fully automated tool, only libraries for specific processes (MCFM, NLOJET++), typically up to $2 \rightarrow 3$.
- NNLO only for a small number of processes.

Underlying Event Upshot

Parton showers

- Theoretically well understood, still in realm of perturbation theory, but beyond fixed order.
- Consistent treatment of leading logs in soft/collinear limit, formally
 equivalent formulations lead to different results because of
 non-trivial choices (evolution parameter, etc.).
- Can be improved through matrix elements in many ways.
 Keywords: MC@NLO, Multijet-merging, ME-corrections

Underlying Event Upshot

To take home

Hadronization

- Various phenomenological models;
- different levels of sophistication, different number of parameters;
- tuned to LEP data, overall agreement satisfying;
- validity for hadron data not quite clear differences possible (beam remnant fragmentation not in LEP).

To take home

Underlying event

- Various definitions for this phenomenon.
- Theoretically not understood, in fact: beyond theory understanding (breaks factorization);
- models typically based on collinear factorization and semi-independent multi-parton scattering
 - ⇒ very naive;
- models highly parameter-dependent, leading to large differences in predictions;
- connection to minimum bias, diffraction etc.?
- even unclear: good observables to distinguish models.

