Phenomenology at collider experiments [Part 2: SM measurements]

Frank Krauss

IPPP Durham

HEP Summer School 31.8.-12.9.2008, RAL

Outline

Introduction: Signal or not?

Gauge sector of the Standard model

Some remarks on flavor

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

Historical example: Mono-jets at $\mathrm{Sp}\bar{\mathrm{p}}\mathrm{S}$

- In Phys. Lett. B139 (1984) 115, the UA1 collaboration reported
 - 5 events with $E_{\perp,{
 m miss}}>$ 40 GeV+a narrow jet and
 - \bullet 2 events with $E_{\perp,{\rm miss}}>$ 40 GeV+a neutral EM cluster

They could "not find a Standard Model explanation" for them, compared their findings with a calculation of SUSY pair-production

(J.Ellis & H.Kowalski, Nucl. Phys. B246 (1984) 189),

・ロト ・四ト ・ヨト ・ヨト

and they deduced a gluino mass larger than around 40 GeV.

- In Phys. Lett. B139 (1984) 105, the UA2 collaboration describes similar events, also after 113 nb⁻¹, without indicating any interpretation as strongly as UA1.
- In Phys. Lett. B158 (1985) 341, S.Ellis, R.Kleiss, and J.Stirling calculated the backgrounds to that process more carefully, and showed agreement with the Standard Model.

Example: PDF uncertainty or new physics

Consider the ADD model of extra dimensions (KK towers of gravitons) and its effect on the dijet cross section:

(Note: Destructive interference with SM)

Shape of *tt*-events

To take home

- It is simple to "find" new physics by misunderstanding, mismeasuring, or misinterpreting "old" physics, i.e. the SM
- Therefore: Control of backgrounds paramount to discovery!!!
- Know your Standard Model and its inputs
- Don't trust just one Monte Carlo/one theorist/one calculation: Be sceptical!
- If possible, infer from well-understood data.
- Also: New measurements for important SM parameters (see below).

Solution for a technical problem: luminosity measurement

The need for a standard candle

- For many measurements (total cross sections): Need luminosity $\mathcal{L}[fb^{-1}s^{-1}] \times \sigma[fb] = event rate[s^{-1}].$
- But design luminosity \neq real luminosity.
- So, we need a way to measure instantaneous luminosity.
- Simple idea: Use equation above with a process yielding sufficiently large event rates (then statistical error small) \longrightarrow maybe σ_{pp}^{tot} ?
- Problem: We do not know it well enough. There's some fit parameterizations, but it is soft QCD physics, so no a priori theoretical knowledge.

At Tevatron: typically error of $\mathcal{O}(10\%)$ due to lumi

• Solution: Use best known process (from theory point of view).

イロト イヨト イヨト イヨト

Theoretical precision

- Drell-Yan type processes best known processes at hadron colliders.
- Results available up to NNLO (the $2 \rightarrow 1$ case!).
- Due to dependence on x_{1,2} only, also differential xsec w.r.t. rapidity known up to NNLO. That's great to get the acceptance correct.

(from C. Anastasiou et al., Phys. Rev. D 69 (2004) 094008)

There will be \approx 20 leptonic W/s at LHC, in principle enough for a sufficiently precise measurement of luminosity.

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● 釣�?

Theory vs. Tevatron data

Systematic uncertainties

Seemingly, main uncertainty from PDFs. Ratios may be a way to overcome this(at least partially).

Why is this important?

- The EW sector of the SM can be parameterized by 4 parameters. Example: α, sin² θ_W, ν, λ
- But other observables related to them: M_W , M_Z , M_H , G_F , This is due to the mechanism of EWSB underlying the SM.
- Example: At tree-level weak and electromagnetic coupling related by

$$G_F = rac{\pi lpha}{\sqrt{2}m_W^2 \sin^2 heta_W^{ ext{tree}}}$$

- Natural question: Is the picture consistent? This is a precision test of the SM and its underlying dynamics.
- First tests: SM passed triumphantly, seems okay even at loop-level.

Why is this important? (cont'd)

- Naively $\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W}$ connects masses with ew mixing angle. (Weinberg-angle, θ_W)
- Loop-corrections to it from self-energies etc..
 - Interesting correction:

$$\Delta \rho_{\rm s.e.} = \frac{3G_F m_W^2}{8\sqrt{2}\pi^2} \left[\frac{m_t^2}{m_W^2} - \frac{\sin^2 \theta_W}{\cos^2 \theta_W} \left(\ln \frac{m_H^2}{m_W^2} - \frac{5}{6} \right) + \dots \right]$$

• Relates m_W , m_t , m_H .

 For a long time, m_t was most significant uncertainty in this relation; by now, m_W has more than caught up.

Why is this important? (cont'd)

Some technical aspects

- But: How to measure the mass?
- From LEP: Direct measurements. Hampered by comparably low stats and jet-energy uncertainties.
- Tevatron: Measurement in leptonic mode, but then the ν's escape.
- So, how to do it at a hadron collider?
- QCD effects controlled by Z.

$\ensuremath{\mathcal{W}}$ mass measurements at the Tevatron

Anticipated sensitivity

- 4 日 1 - 4 日 1 - 4 日 1 - 9 4 ()

Flavo

W mass measurements

Results

Projection to LHC

- Already now, each modern Run-2 measurement more precise than any individual LEP-2 measurement.
- Accuracy goal for LHC: 15 MeV.
- With current theoretical technology (MC@NLO etc.) this is a close call.
- Probably need high-precision tools, including QED, weak corrections mixed with QCD.

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 > ろんら

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

W mass measurements at the LHC

First serious look into acceptances

- ▲ロト ▲暦 ▶ ▲ 臣 ト ▲ 臣 - の Q @

W width measurements

Why is this important?

- Naively, in the SM (massless fermions): $\Gamma_{W \to \ell \ell'} = m_W \frac{\alpha N_c}{12 \sin^2 \theta_W} |V_{\rm CKM}|^2, \quad N_c = 1,3 \text{ for leptons/quarks}$
- Loop corrections: Another precision test of the SM.
- Are there other decay channels?

Method 1: Indirect

- Basic idea: Z properties well-known, relate W and Z.
- Assume W- and Z-production cross section well-known as well as $\Gamma_{W \to \ell \nu}.$
- Then measure leptonic W branching ratio through:

$$\frac{\sigma_{p\bar{p}\to W\to\ell\nu}}{\sigma_{p\bar{p}\to Z\to\ell\ell}} = \frac{\sigma_{p\bar{p}\to W}}{\sigma_{p\bar{p}\to Z}} \times \frac{\mathrm{BR}(W\to\ell\nu)}{\mathrm{BR}(Z\to\ell\ell)}$$

• Can translate BR to width, since partial width well-known.

W width measurements

Method 2: Direct

- Idea: While peak of transverse mass distribution determined by m_W, shape defined by Γ_W.
- Therefore: Build MC templates for varying Γ_W (or even better in m_W - Γ_W plane) and fit.
- Quality control again through *Z*-bosons.
- Note: This is almost model-independent.

$\ensuremath{\mathcal{W}}$ width measurements at Tevatron

▲□▶▲□▶▲□▶▲□▶ = のぐら

Why is this important?

- Major background to current measurements ($t\bar{t}$ etc.) and future discoveries ($H \rightarrow WW$).
- Interesting in its own right:
 - With no Higgs boson or similar: Cross section would explode or *WW*-scattering becomes strongly-interacting.
 - Maybe the first mode where alternatives to the Higgs scenario show.
 - Structure of interactions entirely dominated by gauge principle, but: are there non-Standard exotic couplings?

|▲口▶|▲□▶|▲臣▶|▲臣▶||臣|||夕久(?)

Cross sections in hadronic collisions

Typically factor of 2 suppression per $W \rightarrow Z$. In HE limit dominated by sea $(pp \rightarrow p\bar{p})$.

Theory consistent with experiment.

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

Flavor

Boson pair production

Testing anomalous gauge couplings at Tevatron

- In principle gauge structure and gauge self-interactions defined by form of gauge-covariant derivative $D^{\mu} = \partial^{\mu} + (i/g)A^{\mu}$ and $F^{\mu\nu} = [D^{\mu}, D^{\nu}]$. If fields do not commute, terms like $[A^{\mu}, A^{\nu}]$ emerge. They result in self-interactions with structure constants f^{abc} , coming from $A^{\mu} = A^{\mu}_{a}T^{a}$ (the T^{a} are generators of the group - matrices), and with $f^{abc}T^{c} \propto [T^{a}, T^{b}]$.
- But there are other gauge-invariant options for the gauge self-interactions.

Example: $WW\gamma$ vertex.

$$\begin{aligned} \mathcal{L}_{WW\gamma} &= -i\epsilon [(W^{\dagger}_{\mu\nu}W^{\mu}A^{\nu} - W^{\dagger}_{\mu}W^{\mu\nu}A^{\nu}) + i\kappa W^{\dagger}_{\mu}W_{\nu}F^{\mu\nu} \\ &+ \frac{\lambda}{m_{W}^{2}}W^{\dagger}_{\mu\nu}W^{\mu\rho}F^{\nu}_{\rho} + \bar{\kappa}W^{\dagger}_{\mu}W_{\nu}\bar{F}^{\mu\nu} + \frac{\lambda}{m_{W}^{2}}W^{\dagger}_{\mu\nu}W^{\mu\rho}\bar{F}^{\nu}_{\rho}] \end{aligned}$$

(Terms $\tilde{\lambda}$ and $\tilde{\kappa}$ are CP-violating, $\lambda - 1$ and κ violate parity.)

Flavor

Boson pair production

Testing anomalous gauge couplings in $W\gamma$ at Tevatron

- Simple test for anomalous $WW\gamma$ couplings at Tevatron in $W\gamma$ -FS.
- Good observables: p_{\perp}^{γ} and $Q_{\ell}\delta\eta_{\ell\gamma}$ with ℓ from W decay.
- The latter is result of "radiation zero" due to interference of diagrams.
- Various backgrounds: e.g. QCD (with $j \rightarrow \gamma$ conversion)

• Need cuts on γ : minimal p_{\perp} etc..

Gauge sector of the SM

To take home

- The gauge sector is THE crucial point for the SM.
- There is an intricate interplay with other parameters, especially m_t. (Remark: Adopt the following point: all matter particles want to have masses ≈ v, so the real question is not why the top is so heavy but why the electron is so light!)
- Need to check the consistency: shed light on mechanism of EWSB.
- Even after Higgs boson will be found: Must match the pattern!
- Potentially a window to new physics, in particular through VV-pair production: Unitarity (see lecture 5), anomalous gauge couplings etc..

CKM matrix

 Inter-generation transitions dominated by mass spectrum and CKM matrix;

> Relative size of CKM Matrix (not to scale)

• dominant: $t \rightarrow b, b \rightarrow c, \ldots$

Basic properties

Up to $\mathcal{O}(\lambda^3)$:

$$CKM = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ \lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Source of CP-violation in V₁₃-elements but cosmologically not sufficient;
- unitarity of CKM matrix: triangles $(V_{ik}V_{kj}^* = \delta_{ij});$
- size of CP-violation in SM given by area of the triangle.

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

Turning measurements into the CKM framework

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

Relation to new physics

- There is an amazing consistency of the current flavor-physics measurements: The CKM-picture seems to be about right.
- However, many new physics models can have a similar pattern in their flavor sector (they need to, to survive!).
- So, important question: where to look for new physics?
 - FCNC processes (flavor-changing neutral current). Forbidden at tree-level in the SM (no $Z \rightarrow \overline{b}s$ -vertex etc.). Come through loops \longrightarrow next transparency.
 - Rare processes (like $B^+
 ightarrow au^+
 u_ au$) and *CP*-asymmetries

FCNC as window to new physics

- In SM: Only charged flavor changes, due to CKM matrix.
- Therefore: FCNC like $b \rightarrow s$ or $B\overline{B}$ -mixing always loop-induced:

• Heavy particles running in loop (*W*, *t*): FCNC tests scales similar to potential new physics scales.

B-physics: $B_s \rightarrow \mu \mu$

General comments

- Two contributions (SM): Penguin & Box
- Both suppressed by $V_{tb}V_{ts}^*$
- ${\rm BR}^{({\rm SM})}_{B_{s,d}
 ightarrow \mu \mu} \approx 10^{-9}$

Prospects at LHC

- Simple: leptonic final state
- Minor theoretical uncertainties
- But: Huge background
- Mass resolution paramount

Exp.	ATLAS	CMS	LHCb
σ_m (MeV)	77	36	18

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Mixing phenomena: $B_s \bar{B}_s$ -mixing

Theoretical background

- Mixing phenomena transmitted by boxes in SM: $\propto |V_{ts}V_{tb}^*|^2$ due to GIM.
- $B_s \bar{B}_s$ -mixing very important for unitarity triangle (ratio with $B_d \bar{B}_d$ cancels hadronic uncertainties)
- But: high oscillation frequency in $B_s \overline{B}_s$ -mixing \longrightarrow tricky to see!
- Especially complicated: Tag the flavor is it a *b* or a \bar{b} decaying.
- One of Tevatron's strategies: check for a neighboring *K* from fragmentation.

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖||||の��

Flavor

Top-physics: Mass measurements

Why is this important?

- Strong correlation of top- and W-mass (self-consistency check of SM)
- A change in m_t by 2 GeV shifts SM expectation of m_H by 15%.
- Once the Higgs-boson is found: Do mass and Yukawa-coupling agree?
- Important input in many (loop) calculations.
 Example: FCNC processes.

• • = • • =

Experimental techniques: Upshot

- Typically, three different channels considered separately: dileptons (bb̄ℓν̄ℓ̄'ν'), semi-leptonic (bb̄ℓν̄jj), hadronic (bb̄jjjj).
- Three different methods: Template, matrix element, cross section (see next transparencies).
- Depend partly on top-reconstruction.
- Main systematics: jet energy scale (JES). Solution: "in situ"-calibration through $W \rightarrow q\bar{q}'$ (m_W known).

Flavor

Top-mass measurements

Template method

- Basic idea: Run many MC samples for different values of m_t & compare observables (distributions) with experiment.
- Use observables strongly correlated with m_t : Naive choice $m_{\rm reco.}$.
- Alternatively, look for observables that are least sensitive to badly controlled inputs (like JES).
- Examples: p^ℓ_⊥, vertex displacement of b-decay (see next slide)

(nom c.ochwanenberger's tak at ichter ob)

- 4 同 ト 4 三 ト 4 三 ト

Alternative template method

IPPP

Top-mass measurements

Matrix element method

• Per event define a probability for being signalor background-like:

 $\mathcal{P}(X_{ ext{seen}}) \propto |\mathcal{M}_{ab
ightarrow X}|^2 |\langle X|X_{ ext{seen}}
angle|^2$

- Here |⟨X|X_{seen}⟩|² is "transfer function": Probability to see X_{seen} when X was produced → needs to be taken from MC & checked with control data.
- At Tevatron: LO-matrix element $\mathcal{M}_{ab \to X}$ for $X = t\bar{t} + \text{decays}.$

Results

Some remarks on m_t from $m_{\rm reco}$

- Need m_t in well-defined renormalization scheme: at NLO: $|m_t^{\overline{MS}}(m_t) - m_t^{\text{on-shell}}(m_t)| \approx 8 \text{ GeV}!!!$ Then: Which top-mass has been measured?
- Answer: We do not know.

Due to comparison with MC, it is a LO m_t with QCD parton showers (some HO QCD) and modelling of fragmentation, underlying event, color-reconnection,

My suspicion: It is an "MC"-scheme, close to on-shell.

- But therefore, need either to understand underlying MC better or use better observables, independent of reco and MC.
- Examples for better observables: $\sigma_{t\bar{t}}$, $d\sigma_{t\bar{t}}/dM_{t\bar{t}}$.

Top-mass from $\sigma_{t\bar{t}}$

(日) (同) (三) (三)

Top-mass from $\sigma_{t\bar{t}}$: Results

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Taking the top-mass from $d\sigma_{t\bar{t}}/dM_{t\bar{t}}$ do/dm_{er} [pb/GeV] dø/dm_{er} [pb/GeV] dø/dm_{er} [pb/GeV NLO. CTEOGM, LHC NLO. CTEOGM. LHC NLO. CTEOGM, LHC m. = 165 GeV m, = 170 GeV m, = 175 GeV 2 1 300 600 700 8 tt invariant mass [GeV] 600 700 8 tt invariant mass [GeV] 500 600 700 8 tt invariant mass [GeV] (from R.Frederix & F.Maltoni, arXiv:0712.2355)

(nom K.) redenx & L.Matoni, arXiv.0712.2555

イロト イヨト イヨト イヨト

• Theory uncertainty: $0.25\delta m_{tt}/m_{tt}$ at NLO.

Single-top production

Process characteristics

 Important: Only direct, model-independent measurement of V_{tb}

- At Tevatron: important background to WH
- Cross section quite large, \approx 40 % of $\sigma_{t\bar{t}}$.
- Tricky signature, huge backgrounds, especially top-pairs, *W*+jets, etc.
- Involved analysis techniques: matrix elements, neural networks, boosted decision trees.

Cross sections at Tevatron

イロト イポト イヨト イヨト

Single-top production

A candidate event

- 4 日 1 - 4 日 1 - 4 日 1 - 9 4 ()

Single-top production

New physics aspects

• Sensitive to new physics, different impact in different channels (*t*-channel, *s*-channel and *T*-*W* associated)

The charge of the top

Basic idea

- In the SM, $Q_t = 2/3$, so a charge measurement confirms that the top quark fits the pattern of the isodoublets in the quark sector.
- There are potentially two ways to determine the charge of the top:
 - Check the strength of the coupling to the photon directly, through the $tt\gamma$ coupling, e.g. by building the ratio $\sigma_{t\bar{t}\gamma}/\sigma t\bar{t}g$. This seems feasible at a linear collider, at Tevatron/LHC it is more difficult due to initial state radiation.
 - Infer the charge from the decay products, i.e. from the *W* and the *b*. This is the method used at Tevatron.
- The trick is to make pairings of W's, where the charge is known from the lepton, and the *b*-jet, such that $m_{bW} \approx m_t$. The problem is to check whether the jet originated from a *b* or a \overline{b} , leading to charges 2/3 (SM) or 4/3 (XM), respectively, for a top-quark.

IPPP

The charge of the top

Jet charge

- Consider cone jets with R = 0.4and $p_{\perp} > 20$ GeV.
- Define jet charge by

$$Q_J = \frac{\sum\limits_{i \in \text{tracks}} Q_i (\vec{p}_i \cdot \vec{p}_J)^{\eta}}{\sum\limits_{i \in \text{tracks}} (\vec{p}_i \cdot \vec{p}_J)^{\eta}} \,.$$

- $\eta = 1/2$ has been optimized with MC.
- Label each pair as being SM $(f_+ = 1)$ or XM-like $(f_+ = 0)$, measure $\langle f_+ \rangle$.

(from CDF-Note 8967)

F. Krauss

Phenomenology at collider experiments [Part 2: SM measurements]

Top decays

V_{tb} from top decays DØ Run II L=0.9 fb¹ DØ Runll (qd)[#]0¹¹ -¹⁰ 600 Data (L=0.9 fb⁻¹ - tf R=1 9 tf R=0.5 400 tī R=0 Background 200 95% C.L. 68% C.L. ≥2 _{N,} 0'8 0 9 1.2 ń R (from D0, Phys. Rev. Lett. 100 (2008) 192003) • Simultaneous fit to $\sigma_{t\bar{t}}$ and BR $(t \rightarrow Wb)/BR(t \rightarrow Wq)$ • Underlying assumption: $\sum BR(t \rightarrow Wq) = 1$

W-helicity in top-quark decays

Why is this important?

- * ロ > * @ > * 注 > * 注 > うくぐ

W-helicity in top-quark decays

Measurement

Charged Higgs bosons in top decays?

Theory considerations

- If $m_{H^{\pm}} < m_t m_b$ decay mode is, in principle, open.
- If decays of H^{\pm} along CKM picture, $H^{\pm} \rightarrow \tau \nu$ and $H^{\pm} \rightarrow cs$ dominant:

The next generation(s)?

Theoretical background

- There is no a priori reason to assume 3 generations only.
- Some models, like, e.g. little Higgs, predict the existence of further elementary fermions, like t'.
- Reason against 4th generation: Only 3 ν 's with $m_{
 u} < m_Z/2$ at LEP.

Flavor sector of the SM

To take home

- There are many interesting questions in the flavor sector:
 - Rare/FCNC decays of *b* (and of *t*)
 - Check properties, especially of the top-quark: coupling, CKM elements, charge.
 - $m_{\rm top}$ is an important input, but more (theoretical) work needed to ensure that meaningful results at sufficient accuracy have been extracted from data.
- Top production (single and in pairs) is a relevant background to nearly all new physics searches at LHC → we need to understand this as good as possible.
- LHC is a top-factory! Can go for high precision: not only mass, also V_{tb}, width, rare decays, ...