Follow along worksheet for

Fundamentals of Particle Physics by Emmanuel Olaiya

00:01:00	1.	It takes *3* elementary particles to describe the matter around us.
00:03:10	2.	Energy and mass are *equivalent*.
00:04:00	3.	*1* up quark(s) and *2* down quark(s) make up the neutron.
00:06:30	4.	Interactions are described by *underlying* fields.
00:06:50	5.	For every field there is a *particle*.
00:07:30	6.	The standard model doesn't describe *gravity*
00:08:30	7.	A quark with a greater mass is more *unstable*.
00:10:00	8.	What we see as light is a *photon* in a particular frequency range.
00:12:20	9.	Emmy Noether proved mathematically that if you have *symmetry* you will also have a conservation law.
00:15:20	10.	We can create unstable particles in particle *accelerators*.
00:16:30	11.	When matter is created, *antimatter* must also be created.
00:19:20	12.	Gluons can experience forces via *gluon* exchange (the strong force).
00:20:00	13.	At Desy, in Germany, in some experiments *electrons* were fired at protons.
00:23:00	14.	The weak force is so weak because the W and Z *bosons* are heavy.
00:25:10	15.	Muon pairs can be produced *electromagnetically* and weakly.
00:27:30	16.	The average mass of the Z boson is *91* GeV.
00:28:00	17.	If the energy input into the interaction is close to the mass of the Z boson the probability of producing one is much *higher*.
00:29:10	18.	A greater momentum gives a greater force *propagator*.
00:30:40	19.	The more massive a particle the more it interacts with the *Higgs* field.
00:34:30	20.	Black holes bend *light*.
00:36:30	21.	LIGO detected a *gravitational* wave distorting space time.