Searching for $t\bar{t}H \ (H \rightarrow b\bar{b})$ with ATLAS

RAL Department Seminar

Johnny Raine (Université de Genève)

16th May, 2018
Aim to give an overview of the search for $t\bar{t}H$ production with the ATLAS detector
- Focus on the $H \rightarrow b\bar{b}$ channel
- Describe the full analysis strategy
- Present the results and current status

Analysis presented uses 32.1 fb$^{-1}$ dataset of pp collisions
- Paper submitted to PRD
Introduction

Higgs boson

- Discovered in 2012 by ATLAS and CMS collaborations
 - The last piece of the SM to be found
 - Its mass is unconstrained in the SM
- Want to measure as many properties of the particle as possible
 - Mass, charge, width, CP-nature...
 - But also, how it couples to other particles
 - Coupling strengths predicted by SM given Higgs mass
 - Currently all measurements are consistent with SM
Bosons

- Higgs coupling to all Bosons has been observed
- Directly to W and Z bosons
- Indirectly to γ and gluons through loop processes
 - $\gamma\gamma$ dominated by W bosons in the loop, top contributes
 - gluon loop dominated by top, small contribution from b-quarks

\[g \rightarrow t/b \rightarrow H \rightarrow W/t/b \rightarrow \gamma \]
Introduction
Higgs couplings

Bosons

- Higgs coupling to all Bosons has been observed
- Directly to W and Z bosons
- Indirectly to γ and gluons through loop processes
 - $\gamma\gamma$ dominated by W bosons in the loop, top contributes
 - gluon loop dominated by top, small contribution from b-quarks

Fermions

- Less success with measuring the coupling to fermions
- Only direct observation of one Higgs-fermiom coupling: $H \rightarrow \tau\tau$
- Only evidence for $H \rightarrow b\bar{b}$ decay from ATLAS and CMS
- Top-Higgs coupling inferred through loop processes
Introduction
Higgs couplings

- Two areas to probe for Higgs couplings
 - In Higgs production modes and in decay channels
 - Additionally of interest is the Higgs self coupling (di-Higgs searches)

- Shown here is ggF production with $H \rightarrow ZZ$ decay
 - Production dominated by coupling to top y_t and b-quarks y_b
 - Decay has direct coupling to Z boson
Why $t\bar{t}H (H \rightarrow b\bar{b})$?

Direct measurement of the two largest Higgs fermion couplings

- $t\bar{t}H$:
 - Direct measurement of y_t
 - y_t can probe scale of new physics
 - One of four main Higgs production mechanisms at LHC

- $H \rightarrow b\bar{b}$
 - Largest Higgs BR (58%)
 - In ggF, dominated by multijet background
 - S/B improved by additional final state objects (VH and $t\bar{t}H$ production)
 - Only evidence from $VH(b\bar{b})$
Search for $t\bar{t}H (H \rightarrow b\bar{b})$
Analysis Overview

- Large BR but dominated by background from $t\bar{t}+\text{jets}$ events
 - $t\bar{t}H (H \rightarrow b\bar{b})$ has same final state objects as $t\bar{t} + b\bar{b}$ production
 - Cross section is ~ 2 orders magnitude larger than signal ($\sigma_{t\bar{t}H} = 0.5$ pb at $\sqrt{s} = 13$ TeV)

- Large focus of analysis on separating signal from background
 - Event selection and categorisation
 - Multivariate techniques (Reconstruction and Classification)

- Controlling the background modelling and systematic uncertainties
 - The dominant $t\bar{t} + \text{jets}$ background has large systematic uncertainties
 - Perform a simultaneous profile likelihood fit on signal and control regions

- Analysis is split into four steps:
 - Event selection, which split into channels based on lepton number
 - Event categorisation, performed in each channel
 - Reconstruction and Classification
 - Signal strength extraction
Background Modelling

- Search is dominated by $t\bar{t} + \text{jets}$ background
 - Split into $t\bar{t} + \geq 1b$, $t\bar{t} + \geq 1c$ and $t\bar{t} + \text{light}$
 - Defined by matching of b/c-hadrons to additional jets at particle level
- $t\bar{t} + b\bar{b}$ has same final state as $t\bar{t}H (H \rightarrow b\bar{b})$ signal
 - $t\bar{t} + \geq 1b$ and $t\bar{t} + \geq 1c$ production not well understood
- Large number of systematic uncertainties cover $t\bar{t} + \text{HF}$ modelling
 - Covering choice of generator, parton shower, 3/4 vs 5FS PDFs
 - Free float normalisation of $t\bar{t} + \geq 1b$ and $t\bar{t} + \geq 1c$ in the fit
- In order to improve the $t\bar{t} + \geq 1b$ modelling, nominal sample has individual $t\bar{t} + \geq 1b$ components adjusted to match dedicated $t\bar{t} + b\bar{b}$ sample produced to NLO precision using 4FS PDF
Event Selection and Categorisation
Event Selection and Categorisation

Objects in our Events

- From our signal/background:
 - Four b-quarks
 - Two W-bosons
- W^\pm decays to $\ell\nu$ or $q\bar{q}$
 - Always require at least one lepton
 - Provides clean trigger signature
 - Two channels: 1ℓ and 2ℓ

- Detector doesn’t see b-quarks
 - Hadronisation and parton shower
 - Collimated shower of particles: Jet reconstruction
 - Attempt to identify jets originating from b-quarks (b-jets)

1 ATLAS cannot save all events from collisions. Require triggers to decide whether to save an interesting event
Event Selection and Categorisation

b-tagging

- Jets constructed by grouping energy deposits in the detector (clusters)
 - Use anti-k_t algorithm with $\Delta R = 0.4$
- Exploiting properties of B-hadrons to identify b-jets
 - Long lifetime \rightarrow flight path in detector
 - Large impact parameter of tracks matched to a secondary vertex
- Three types of algorithms to exploit
 - Impact parameter based
 - Secondary vertex reconstruction
 - Topological decay reconstruction
- Output variables are combined into a single discriminant
Event Selection and Categorisation

b-tagging

- Boosted Decision Tree to combine multiple input variables
 - Separate b-jets from c- and light-flavour jets
 - Background is 80% LF, 20% c-jet
- Kinematic properties are also included in the training
 - Reweight the distributions to have no kinematic differences
 - But can exploit underlying correlations with other inputs
- Four b-tagging efficiency working points
 - 60%, 70%, 77% and 85% b-efficiency
 - Define b-tagged jets using one WP
Event Selection and Categorisation

b-tagging

- Boosted Decision Tree to combine multiple input variables
 - Separate b-jets from c- and light-flavour jets
 - Background is 80% LF, 20% c-jet
- Kinematic properties are also included in the training
 - Reweight the distributions to have no kinematic differences
 - But can exploit underlying correlations with other inputs
- Four b-tagging efficiency working points
 - 60%, 70%, 77% and 85% b-efficiency
 - Define b-tagged jets using one WP
 - OR use all working points together
Event Selection
Pre-selection

- In the final state expect six (four) b-jets in the 1ℓ (2ℓ) channels
 - Would select four b-jets at the tightest WP
 - Open up the acceptance to take into account detector efficiencies
 - A b-quark could be out of the acceptance of the detector/mistagged
 - Require ≥5 (≥3) jets and reduced b-tag requirements in preselection
 - Use jet multiplicity and b-tag working points to define regions

- Additionally: consider a “Boosted” topology in 1ℓ channel
 - High p_T Higgs boson/top quark
 - Jets from decay products have significant overlap, form one fat jat
Event Categorisation

Overview

- Two methods used to categorise events
 - i. Background based categorisation (resolved events)
 - ii. Top and Higgs candidate large jet tagging (boosted events)
- Regions are used to define control regions and signal regions
 - Signal regions are enriched in $t\bar{t}H (H \rightarrow b\bar{b})$ signal
 - Control regions are all other regions
 - Multivariate techniques are used in signal regions to improve sensitivity of the analysis
Event Categorisation

Overview

Resolved Categorisation

- Start with initial loose preselection of events, consistent with $t\bar{t} + X$
- Use jet info to define regions enriched in different $t\bar{t} + \text{jets}$ composition
 - Split events by jet multiplicity, use b-tag WPs of up to four jets

Boosted Categorisation

- Select events with objects corresponding to $t\bar{t}H (H \rightarrow b\bar{b})$ events with a boosted Higgs and top
 - Require two large jets (anti-k_t with $\Delta R = 1.0$)
 - Tag one as a top candidate
 - Tag the other as a Higgs candidate
- All events go into the boosted region in case of overlap with resolved
Event Categorisation

Boosted

- Only performed in single lepton channel
- Reduces combinatorics of final state objects
- Selection:
 - ≥ 5 small jets, ≥ 2 reclustered\(^1\) large jets
 - ≥ 1 jet tagged@85\% WP outside large jets
 - ≥ 1 top candidate, ≥ 1 Higgs candidate

<table>
<thead>
<tr>
<th>p_T [GeV]</th>
<th>Top</th>
<th>Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent jets</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tagged @ 85%</td>
<td>$\equiv 1$</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^1\) Reclustered jets are reconstructed using the anti-k_t algorithm but taking smaller radius jets as inputs instead of clusters
Event Categorisation

Resolved

▶ Each jet in the event is labelled by the tightest b-tag WP it passes
▶ Separate events into bins of the four jet WPs ($\text{jet}_1, \text{jet}_2, \text{jet}_3, \text{jet}_4$)
Event Categorisation

Resolved

- Each jet in the event is labelled by the tightest b-tag WP it passes
- Separate events into bins of the four jet WPs ($\text{jet}_1, \text{jet}_2, \text{jet}_3, \text{jet}_4$)
 - The tighter the WPs the more signal and $t\bar{t} + b\bar{b}$ enriched the bin

$$60\% \ 60\% \ 60\% \ 60\% = (60, 60, 60, 60) \quad (t\bar{t}+ \geq 2b)$$
Event Categorisation

Resolved

- Each jet in the event is labelled by the tightest b-tag WP it passes
- Separate events into bins of the four jet WPs ($\text{jet}_1,\text{jet}_2,\text{jet}_3,\text{jet}_4$)
 - The tighter the WPs the more signal and $t\bar{t} + b\bar{b}$ enriched the bin
 - Bins with looser jets will be enriched in $t\bar{t} + \geq 1c$ and $t\bar{t} + \text{light}$

\[
\begin{align*}
60\% & \quad 60\% & \quad 60\% & \quad 60\% & = (60,60,60,60) & (t\bar{t}+ \geq 2b) \\
60\% & \quad 70\% & \quad 60\% & \quad 85\% & \quad 100\% & = (60,60,70,85) & (t\bar{t}+ \geq 1c)
\end{align*}
\]
Event Categorisation
Resolved

- Each jet in the event is labelled by the tightest b-tag WP it passes
- Separate events into bins of the four jet WPs ($\text{jet}_1, \text{jet}_2, \text{jet}_3, \text{jet}_4$)
 - The tighter the WPs the more signal and $t\bar{t} + b\bar{b}$ enriched the bin
 - Bins with looser jets will be enriched in $t\bar{t}+\geq 1c$ and $t\bar{t} + \text{light}$

 | 60% | 60% | 60% | 60% | |
|---|---|---|---|---|
 | 60% | 70% | 60% | 85% | 100% |

 $= (60,60,60,60)$ \hspace{1cm} ($t\bar{t}+ \geq 2b$)
 $= (60,60,70,85)$ \hspace{1cm} ($t\bar{t}+\geq 1c$)

- Each bin will have a different background composition
 - Combine bins with similar backgrounds to form regions
 - Finer $t\bar{t}+\geq 1b$ categorisation using number of additional b-hadrons
 - e.g. Merge all bins with more than 60% $t\bar{t}+ \geq 2b$
 - In 2ℓ events with $\geq4j$: $(60,60,60,60)$ and $(60,60,60,70)$ bins
Event Categorisation
Resolved

- Using this method more freedom to have regions enriched in different backgrounds
 - Help control modelling of individual processes
- Due to shared final state, enriched $t\bar{t} + b\bar{b}$ regions are natural signal regions
- In total have 3 (5) signal regions and 4 (6) control regions in resolved 2ℓ (1ℓ)
- Can represent binning on 2D plot with $y = (\text{jet}_1, \text{jet}_2)$ and $x = (\text{jet}_3, \text{jet}_4)$
 - Convention uses b-tag discriminant bin instead of WP
 - 5=60%, 4=70% … 1=100% (untagged)
Event Categorisation
Graphical Representation - \(2\ell\) resolved

![Graphical Representation](image.png)
Event Categorisation

Graphical Representation - 1ℓ resolved

(1st, 2nd) jet
b-tagging discriminant

(3, 3) (4, 3) (5, 3) (4, 4) (5, 4) (5, 5)

(3rd, 4th) jet
b-tagging discriminant

1ℓ resolved

SR

SR

CR

t \bar{t} + b

CR

t \bar{t} + light

(3rd, 4th) jet

(1st, 2nd) jet

(3, 3) (4, 3) (5, 3) (4, 4) (5, 4) (5, 5)

Johnny Raine (UniGe)
RAL Seminar
16th May, 2018
21 / 45
19 regions in total, of which 9 are signal regions.

Boosted region is classed as a signal region.

- **1ℓ channel**

- **2ℓ channel**
19 regions in total, of which 9 are signal regions
- Boosted region is classed as a signal region
Reconstruction and Classification
Analysis Strategy
Overview

- Perform a binned profile likelihood fit simultaneously across all regions
 - In the signal regions want to enhance sensitivity to $t\bar{t}H$ events
 - Use the control regions to help handle the $t\bar{t} + \text{jets}$ background
- Use an MVA discriminant in all signal regions
 - Two stage strategy employed - Reconstruction \rightarrow Classification
- In control regions use either a single bin or scalar sum of jet p_T (H_T^{had})
 - H_T^{had} only used in $t\bar{t} + c$ CRs in 1ℓ regions
 - Required additional control over $t\bar{t} + \geq 1c$ modelling
Two Stage MVA
1. Reconstruction

- Solve object combinatorics to reconstruct event hard scatter
 - Match jets/leptons to the partons in $t\bar{t}H (H \rightarrow b\bar{b})/t\bar{t} + b\bar{b}$

- Three complimentary techniques used
 - i. Reconstruction BDT
 - ii. Likelihood discriminant
 - iii. Matrix Element Method

- From each can construct variables with strong discrimination power

- Note: No explicit reconstruction in the Boosted region
 - Use the tagged Higgs candidate from event selection
Two Stage MVA

1. Reconstruction - Reconstruction BDT

- Train a BDT to assign jets to the partons in $t\bar{t}H (H \rightarrow b\bar{b})$ hard scatter
 - Discriminates against combinatoric background
 - Use invariant masses and angular separations of jets/leptons
 - Evaluate on all events to choose jet matching
- Get a most $t\bar{t}H$-like jet-parton matching per event
 - Use BDT output score as a discriminant
 - Signal events more likely to have higher output score
 - Reconstruct object properties from jet assignment - Higgs mass
- Method used in all resolved signal regions
Two Stage MVA

1. Reconstruction

Likelihood Discriminant

- Only used in 1ℓ resolved signal regions
- Probability of an event to be signal or background ($t\bar{t} + b$ or $t\bar{t} + b\bar{b}$)
 - 1D PDFs constructed for inv. masses and angular distributions
 - Probabilities calculated as weighted product of all 1D PDFs
 - Weighted average of all possible combinations per event
- Final discriminant is a likelihood ratio of the sig and bkg probabilities

Matrix Element Method

- Only performed in the most signal enriched 1ℓ signal region
- Uses the four vector information of all jets and leptons, and the MET
- Signal and background hypothesis testing performed at parton level
- Final discriminant log of sig and bkg likelihood ratio
Two Stage MVA

1. Reconstruction

Reco BDT
- Exploits correlations within each combination
- Provides jet assignments based on $t\bar{t}H (H \rightarrow b\bar{b})$

LHD
- Combines all combinations together into one discriminant

LHD+MEM
- Calculate both signal and background likelihoods

MEM
- Calculates discriminant at parton level using 4-vectors
Two Stage MVA
2. Classification

- Construct discriminants in each signal region to separate $t\bar{t}H$ from $t\bar{t}$
- Combine multiple variables with moderate separation power
 - Most powerful variables come from the reconstruction methods
- BDT optimised in each signal region
- Cross-validation performed to mitigate problems from overtraining
- Binning optimised for final significance in the fit
Two Stage MVA

2. Classification

Exanmple Input Variables

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Event Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Reco discriminants</td>
<td>▶ From event $E-\vec{p}$ tensor (Aplanarity, Sphericity)</td>
</tr>
<tr>
<td>▶ Object properties (i.e. Higgs mass) from reco BDT</td>
<td>▶ Fox-Wolfram moments</td>
</tr>
<tr>
<td>▶ Boosted Higgs/top properties</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Event</th>
<th>Object Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ nJets above p_T threshold</td>
<td>▶ Properties of a (b)-jet pair passing criteria</td>
</tr>
<tr>
<td>▶ Large Jet substructure</td>
<td>▶ $\Delta \eta_{bb}^{Max}$, $M_{jj}^{Minp_T}$</td>
</tr>
</tbody>
</table>
Analysis Strategy

Event Reconstruction and Classification

Two Stage MVA

Final Discriminant

- Most signal enriched region in each selection (2\(\ell\), 1\(\ell\) resolved/boosted)
- Regions shown before performing the fit
 - Red is \(t\bar{t}H\) assuming SM xsec

ATLAS

- \(\sqrt{s} = 13\) TeV, 36.1 fb\(^{-1}\)
- Dilepton
- SR\(^{26}\)
- Pre-Fit

- Data
- \(t\bar{t} + \text{light}\)
- \(t\bar{t} + \geq 1c\)
- \(t\bar{t} + \geq 1b\)
- \(t\bar{t} + V\)
- Non-\(t\)
- Total unc.
- \(t\bar{t}H\) (norm)

ATLAS

- \(\sqrt{s} = 13\) TeV, 36.1 fb\(^{-1}\)
- Single Lepton
- SR\(^{26}\)
- Pre-Fit

- Data
- \(t\bar{t} + \text{light}\)
- \(t\bar{t} + \geq 1c\)
- \(t\bar{t} + \geq 1b\)
- \(t\bar{t} + V\)
- Non-\(t\)
- Total unc.
- \(t\bar{t}H\) (norm)

ATLAS

- \(\sqrt{s} = 13\) TeV, 36.1 fb\(^{-1}\)
- Single Lepton
- SR\(^{\text{boosted}}\)
- Pre-Fit

- Data
- \(t\bar{t} + \text{light}\)
- \(t\bar{t} + \geq 1c\)
- \(t\bar{t} + \geq 1b\)
- \(t\bar{t} + V\)
- Non-\(t\)
- Total unc.
- \(t\bar{t}H\) (norm)
Results
Perform binned profile likelihood fit across all bins and regions simultaneously
 ▶ No distinction made between Signal and Control regions in the fit
Parameter of interest is $t\bar{t}H$ signal strength $\mu_{t\bar{t}H}$
 ▶ Defined as $\mu_{t\bar{t}H} = \frac{\sigma_{t\bar{t}H}^{obs}}{\sigma_{t\bar{t}H}^{SM}}$
Large number of nuisance parameters covering modelling and detector systematic uncertainties
 ▶ Free-floating $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ normalisation factors
Results

- Individual channel assessed using decorrelated signal strength
 - Still fit all regions simultaneously
- $t\bar{t}H$ has an observed (expected) significance of 1.6σ (1.8σ)
- Exclude $\mu > 2.0$ at 95% CL
Results

Regions Summary

Pre-Fit

Post-Fit

Johnny Raine (UniGe)
RAL Seminar
16th May, 2018 35 / 45
Let's revisit the three regions shown before

$t\bar{t}H$ shown for extracted signal strength $\mu = 0.84^{+0.64}_{-0.61}$
Results
Impact of Systematic Uncertainties

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$\Delta \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}+ \geq 1b$ modelling</td>
<td>+0.46 -0.46</td>
</tr>
<tr>
<td>Background-model stat. unc.</td>
<td>+0.29 -0.31</td>
</tr>
<tr>
<td>b-tagging efficiency and mis-tag rates</td>
<td>+0.16 -0.16</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>+0.14 -0.14</td>
</tr>
<tr>
<td>$t\bar{t}H$ modelling</td>
<td>+0.22 -0.05</td>
</tr>
<tr>
<td>$t\bar{t}+ \geq 1c$ modelling</td>
<td>+0.09 -0.11</td>
</tr>
<tr>
<td>JVT, pileup modelling</td>
<td>+0.03 -0.05</td>
</tr>
<tr>
<td>Other background modelling</td>
<td>+0.08 -0.08</td>
</tr>
<tr>
<td>$t\bar{t}$ + light modelling</td>
<td>+0.06 -0.03</td>
</tr>
<tr>
<td>Luminosity</td>
<td>+0.03 -0.02</td>
</tr>
<tr>
<td>Light lepton (e, μ) id., isolation, trigger</td>
<td>+0.03 -0.04</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>+0.57 -0.54</td>
</tr>
<tr>
<td>$t\bar{t}+ \geq 1b$ normalisation</td>
<td>+0.09 -0.10</td>
</tr>
<tr>
<td>$t\bar{t}+ \geq 1c$ normalisation</td>
<td>+0.02 -0.03</td>
</tr>
<tr>
<td>Intrinsic statistical uncertainty</td>
<td>+0.21 -0.20</td>
</tr>
<tr>
<td>Total statistical uncertainty</td>
<td>+0.29 -0.29</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>+0.64 -0.61</td>
</tr>
</tbody>
</table>

- Analysis is currently systematically limited
- Largest uncertainties from $t\bar{t} + HF$ modelling
- Also notable impact:
 - Bkg modelling stats.
 - Flavour tagging
 - Jet energy scale and resolution
Results
Impact of Systematic Uncertainties

- Analysis is currently systematically limited
- Largest uncertainties from $t\bar{t} + HF$ modelling
- Also notable impact:
 - Bkg modelling stats.
 - Flavour tagging
 - Jet energy scale and resolution
- Large number of constrained two-point systematics
$t\bar{t}H$ Combination
Results

$t\bar{t}H$ Combination

- $t\bar{t}H$ ($H \rightarrow b\bar{b}$) is just one of several searches in ATLAS for $t\bar{t}H$
- Other searches are optimised for other Higgs decay modes
 - $t\bar{t}H$ multileptons: $H \rightarrow WW^*/ZZ^*/\tau\tau$
 - $H \rightarrow \gamma\gamma$
 - $H \rightarrow ZZ^* \rightarrow 4\ell$

- All analyses have been performed using same 36.1 fb$^{-1}$ dataset
- A combined fit over all channels has also been performed
t\bar{t}H multileptons

- 8 distinct signal regions targeting different decay modes
- Dominant backgrounds from $t\bar{t} + V$, $t\bar{t}$, fake and non-prompt leptons
 - Use a BDT to suppress non-prompt leptons
 - MVA discriminants used in five signal regions
- Wide range of S/B, from a few percent to >40%

t\bar{t}H resonant searches

- $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ are $t\bar{t}H$ enriched regions in inclusive searches
 - Only use $t\bar{t}H$ enriched regions
- $H \rightarrow \gamma\gamma$: Cut based and BDT selections to separate signal from ggF and multijet backgrounds
- $H \rightarrow ZZ^* \rightarrow 4\ell$: Very pure cut and count, expected < 0.5 events
Combining all $t\bar{t}H$ searches

Non-$t\bar{t}H$ production modes set to SM values

Almost all detector and signal and background uncertainties treated as correlated

Best fit value of

- $\mu_{t\bar{t}H} = 1.2^{+0.19}_{-0.23} (stat) ^{+0.21}_{-0.3} (syst)$
- $\sigma_{t\bar{t}H} = 590^{+160}_{-150} \text{ fb}^{-1}$

Combined observed (expected) significance of 4.2 σ (3.8σ)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Best-fit $\mu_{t\bar{t}H}$</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>Multilepton</td>
<td>$1.6 ^{+0.5}_{-0.4}$</td>
<td>$1.0 ^{+0.4}_{-0.4}$</td>
</tr>
<tr>
<td>$H \rightarrow b\bar{b}$</td>
<td>$0.8 ^{+0.6}_{-0.6}$</td>
<td>$1.0 ^{+0.6}_{-0.6}$</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$0.6 ^{+0.7}_{-0.6}$</td>
<td>$1.0 ^{+0.8}_{-0.6}$</td>
</tr>
<tr>
<td>$H \rightarrow 4\ell$</td>
<td>< 1.9</td>
<td>$1.0 ^{+3.2}_{-1.0}$</td>
</tr>
<tr>
<td>Combined</td>
<td>$1.2 ^{+0.3}_{-0.3}$</td>
<td>$1.0 ^{+0.3}_{-0.3}$</td>
</tr>
</tbody>
</table>
Results
	$t\bar{t}H$ Combination - Interpretations

- Wide range of Higgs couplings probed in the combination
- Using the kappa-parameterisation, scale the Higgs-couplings of particles (or groups of particles) by a factor κ_i
 - Look at coupling of Higgs boson to fermions κ_F and vector bosons κ_V
 - Couplings to gluons and photons comes from loop processes

- Consistent with Standard Model
Conclusion
Latest results from ATLAS for search for $t\bar{t}H (H \rightarrow b\bar{b})$ including combination with other channels

Very challenging analysis with heavy use of multivariate techniques to enhance sensitivity

- Also makes full use of flavour tagging in region definitions to help control $t\bar{t} + \text{jets}$ backgrounds

$t\bar{t}H (H \rightarrow b\bar{b})$ is currently systematically dominated

- Observed (expected) significance of $1.6\sigma (1.8\sigma)$
- Consistent with SM and B-Only hypotheses

Evidence for $t\bar{t}H$ with 36.1 fb$^{-1}$ ATLAS Run 2 data in combination
Additional data collected in 2017 could push combination above 5σ

Potential $H \rightarrow b\bar{b}$ combination to aim for 5σ using 2017 data
- Combining VH, $t\bar{t}H$ and VBF searches targeting $b\bar{b}$
- Currently 3σ from $VH(b\bar{b})$ search

However, further understanding of background modelling required for $t\bar{t}H (H \rightarrow b\bar{b})$ search
Backup
Region Composition
Detailed

ATLAS
\(\sqrt{s} = 13 \text{ TeV} \)

Single Lepton

\[
\begin{align*}
\text{CR}_{\text{lt}, \text{light}}^{(5)} & \quad \text{CR}_{\text{lt}, \geq 1c}^{(5)} \quad \text{CR}_{\text{lt}, \geq 3b}^{(5)} \\
\text{SR}_{1}^{(5)} & \quad \text{SR}_{2}^{(5)} \quad \text{SR}_{\text{boosted}}^{(5)} \\
\end{align*}
\]

Dilepton

\[
\begin{align*}
\text{CR}_{\text{lt}, \text{light}}^{(3)} & \quad \text{CR}_{\text{lt}, \geq 1c}^{(3)} \quad \text{CR}_{\text{lt}, \geq 3b}^{(3)} \\
\text{SR}_{1}^{(3)} & \quad \text{SR}_{2}^{(3)} \quad \text{SR}_{\text{boosted}}^{(3)} \\
\end{align*}
\]
Region Definitions

Semileptonic Regions

<table>
<thead>
<tr>
<th>Region name</th>
<th>Definition</th>
<th>Region name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 6) jets</td>
<td>(> 60% \ t \bar{t} + \geq 2b)</td>
<td>(\geq 5) jets</td>
<td>(> 60% \ t \bar{t} + \geq 2b)</td>
</tr>
<tr>
<td>(\geq 6) jets (\geq 6j)</td>
<td>(> 45% \ t \bar{t} + \geq 2b)</td>
<td>(\geq 5) jets (\geq 5j)</td>
<td>(> 20% \ t \bar{t} + \geq 2b)</td>
</tr>
<tr>
<td>(\geq 6) jets (\geq 3) light</td>
<td>(> 30% \ t \bar{t} + \geq 2b)</td>
<td>(\geq 5) jets (\geq 3) light</td>
<td>(> 30% \ t \bar{t} + \geq 2b)</td>
</tr>
<tr>
<td>(\geq 6) jets (\geq 6j)</td>
<td>(> 30% \ t \bar{t} + 1b)</td>
<td>(\geq 5) jets (\geq 4j)</td>
<td>(> 20% \ t \bar{t} + 1b)</td>
</tr>
<tr>
<td>(\geq 6) jets (\geq 6j) (\geq 1c)</td>
<td>(> 30% \ t \bar{t} + \geq 1c)</td>
<td>(\geq 5) jets (\geq 4j) (\geq 1c)</td>
<td>(> 20% \ t \bar{t} + \geq 1c)</td>
</tr>
<tr>
<td>(\geq 6) jets (\geq 6j) (\geq 1c) light</td>
<td>Remaining events</td>
<td>(\geq 5) jets (\geq 4j) (\geq 1c) light</td>
<td>Remaining events</td>
</tr>
</tbody>
</table>

Dilepton Regions

<table>
<thead>
<tr>
<th>Region name</th>
<th>Definition</th>
<th>Region name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 4) jets</td>
<td>(> 70% \ t \bar{t} + \geq 2b)</td>
<td>(\geq 3) jets</td>
<td>(> 30% \ t \bar{t} + \geq 1b)</td>
</tr>
<tr>
<td>(\geq 4) jets (\geq 4j)</td>
<td>(> 1.5% \ t \bar{t}H)</td>
<td>(\geq 3) jets (\geq 4j)</td>
<td>(> 25% \ t \bar{t} + \geq 1c)</td>
</tr>
<tr>
<td>(\geq 4) jets (\geq 4j) (\geq 1c) light</td>
<td>Remaining events</td>
<td>(\geq 3) jets (\geq 4j) (\geq 1c) light</td>
<td>Remaining events</td>
</tr>
</tbody>
</table>
Comparing the three signal regions directly

- $t\bar{t}H$ shown post-fit for extracted signal strength $\mu = 0.84^{+0.64}_{-0.61}$