Radiation effects in CMOS technologies for the LHC upgrades

F.Faccio
CERN - EP/ESE
Total Ionising Dose
This is the ‘classical’ problem for CMOS technologies and has to be addressed

Displacement Damage
It is very difficult to design a Reference voltage generator (bandgap) very stable with displacement damage and TID

Single Event Effects
‘Usual’ strategies are needed, but multiple bit errors are more likely - separation between redundant storing cells is required
This talk will cover radiation effects (TID) in these technologies

130nm Tech. A
Chosen in the early 2000s

130nm ‘backup’
Selected a few of years ago, now it has become the streamline technology in this node

65nm
Selected a few of years ago, and used for new developments in pixel detectors, in high-speed data links and for the CMS tracker upgrade
Radiation hard processes

Hardness By Design (HBD) in commercial-grade processes

Production for LHC: 0.25um CMOS

ca. 1998-2000

TID up to 10Mrad

Leakage in parasitics

Main transistor V_{th}, g_m, ...

Leakage in parasitics

Production for LHC: 0.25um CMOS

Upgrades: 130nm CMOS

ca. 2006

TID: 100Mrad

Leakage in parasitics RINCE

ca. 2011

TID: 100Mrad to 1Grad

Leakage in parasitics RINCE

(some) tracker upgrades: 65nm CMOS

TID: 400Mrad

Leakage in parasitics RISCE
Ionising dose in MOS structures: it leads to the accumulation of trapped holes in the oxide and the activation of interface states.

Trapped charge ALWAYS POSITIVE!

Interface states Can trap both e- and h+
The interface states can trap either positive or negative charges, depending on the Fermi level at the interface.
In NMOS the contributions from the two type of defects tend to compensate, in PMOS they add up.
Charge buildup in the oxides and at their interface influences the electrical parameters of transistors (for the gate oxide) and of parasitic structures unavoidable in CMOS.
The accumulation of both type of ‘defects’ decreases with the thickness of the oxide

If the gate oxide is sufficiently thin, problems arise in the parasitic structures where the oxide thickness does not follow any scaling rule
Source-Drain leakage is eliminated by the Enclosed Layout Transistor (ELT)...

Inter-diffusion leakage is eliminated by p+ guard rings...
The equation used for the design of ASICs used in today’s LHC experiments and manufactured in an (affordable) commercial-grade 0.25um process is:

Thin gate oxide + HBD techniques = Radiation tolerance
Radiation hard processes

Hardness By Design (HBD) in commercial-grade processes

Production for LHC: 0.25um CMOS

ca. 1998

TID up to 10Mrad

Main transistor
$V_{th}, g_m, ...$

Leakage in parasitics

ca. 2006

Time

Production for LHC: 0.25um CMOS

TID: 100Mrad to 1Grad

Upgrades: 130nm CMOS

ca. 2014

TID: 400Mrad

Leakage in parasitics

Still valid?

RINCE

Leakage in parasitics

RINCE

RISCE

Validation in parasitics

Valid HERE
Is this extrapolation correct?

TID damage

Gate t_{ox}

TID tolerance

Gate t_{ox}

Technology node

250nm 180nm 130nm 90nm 65nm
MY HOBBY: EXTRAPOLATING

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
In 2003-2005 we started to look at the 130nm node in view of application in LHC upgrades
Samples from 3 different vendors were irradiated and measured
The main parameters extracted from the measurements are:
- Drive current (I_{on})
- Threshold voltage (V_{th})
- Transconductance (G_m)
- Leakage current

Leakage at $|V_{gs}| = 0V$, $|V_{ds}| = 1.2V$

I_{on} at $|V_{gs}| = |V_{ds}| = 1.2V$
The gate oxide in the three 130nm technologies studied appeared to be hard to the explored levels (30-140Mrad).
This was directly measured on ELT transistors in 2 of the 3 technologies.

Example for ELTs in tech.A
The leakage paths are technology dependent
(here this is shown for source-drain leakage currents in NMOS)
The leakage current in NMOS is due to the accumulation of defects in the lateral Shallow Trench Isolation (STI) oxide.
In PMOS both type of defects increase the threshold of the parasitic lateral transistor, and no leakage current can be observed.
The selection of the manufacturer (Tech. A) was based on a number of criteria: long-term availability, cost, radiation tolerance, support offering, ...

A large effort was dedicated to the characterisation of the selected technology

Is there still the need for ELTs and guard rings?
The leakage current is the sum of different mechanisms involving:
- the creation/trapping of charge (by radiation)
- its passivation/de-trapping (by thermal excitation)

These phenomena are Dose Rate and Temperature dependent!

Is there still the need for ELTs and guard rings?
The properties of the defects (hole traps, interface states) have been studied in these two publications:

No digital library with ELTs and guardrings was developed. The standard cells library from a commercial supplier was considered usable. Designers have to evaluate if the leakage could threaten the circuit/system functionality in the application.
The charge trapped in the lateral STI can also influence the characteristics of the main transistor - more evidently if it is narrow. This has been called **Radiation Induced Narrow Channel Effect (RINCE)**

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS
RINCE can be conceptually represented by this cartoon

W=min size

Pre-rad

G

S D

STI

100Mrad

S D

W=moderate size

Pre-rad

G

S D

STI

100Mrad

S D

NOTE: In this cartoon, there is no distinction between the positive charge trapped in the oxide or in interface traps
A report containing all irradiation results and guidelines for designers has been written in 2006 and distributed since

The report and links to the papers are available at the ASIC Support service Web site:
http://support-ictech-mpws.web.cern.ch/support-ICtech-MPWs/

The documents can be found under the page:
https://support-ictech-mpws.web.cern.ch/support-ICtech-MPWs/IBM-CMOS8RF/RadTol.htm

Excerpt from the report

In reading and applying the recommendations, one should remember that, while small analog circuits have been integrated by the HEP community in this technology and have given radiation results in line with the expectations, no real demonstrator of a medium-large digital circuit has been implemented and tested for radiation so far. It is also important to point out that, although the radiation response of the technology has been measured as unchanged over time (see section 2), exploiting its natural radiation tolerance presents some risks and requires constant monitoring over the full prototype and production cycle.

Also, measurements at low T could not be made at the time...
The leakage increase is visible in complex logic ASICs developed in this technology.

Logic core current consumption in the GBTx at room T: green curve (courtesy P.Moreira and GBT Team)

Logic core current consumption of the ABC130 at different T and dose rates (courtesy F.Anghinolfi and ABC130 Team)
... and current consumption in the ATLAS IBL in the experiment during data acquisition

... due to radiation-induced leakage current in the FEI4 ASIC
On the basis of our understanding of the mechanisms leading to the leakage current, the following scenario is plausible for discontinuous irradiation tests.
References to publications for radiation studies in this 130nm technology

Leakage current properties

Noise properties
- M.Manghisoni et al., “Noise Characterization of 130 nm and 90 nm CMOS Technologies for Analog Front-end Electronics”, IEEE TNS Vol.55, n4, August 2006, p.2456
- V.Re et al., “Review of radiation effects leading to noise performance degradation in 100 - nm scale microelectronic technologies”, in 2008 IEEE NSS conference record, p.3086

Reliability
M.Silvestri et al., “Degradation induced by X-ray irradiation and Channel Hot Carrier stresses in 130-nm NMOSFETs with enclosed layout”, IEEE TNS 55, n6, Dec.2008, p.3216
M.Silvestri et al., “Single Event Gate Rupture in 130-nm CMOS Transistor Arrays Subjected to X-ray Irradiation”, Presented at RADECs 2009, accepted for publication in IEEE TNS
The TID characterisation of transistors from the selected ‘backup’ 130nm technology has been made in 2014-15. The backup has meanwhile become the mainstream for all new developments.

The study was targeted at a TID of up to 400Mrad.

All the following figures have been provided by S. Michelis (CERN/EP/ESE)
Radiation hard processes

Hardness By Design (HBD) in commercial-grade processes

Production for LHC: 0.25um CMOS

(a) tracker upgrades: 65nm CMOS

TID up to 10Mrad

TID: 100Mrad to 1Grad

Upgrades: 130nm CMOS

TID: 400Mrad

Main transistor V_{th}, g_m, ...

Leakage in parasitics

Leakage in parasitics RINCE

Leakage in parasitics RINCE RISCE

Leakage in parasitics RINCE RISCE
The electrical performance of the NMOS transistors in practically unaffected, while PMOS loose drive current \((I_{on}) \) by an amount dependent on their size: the smaller the transistor, the larger the degradation. The degradation is reduced during irradiation at lower temperature.

The study was targeted at a TID of up to 400Mrad
As already observed for Tech.A, the evolution of the NMOS leakage current is a function of the temperature and dose rate: it is the same physics!

HDR = 9Mrad/hour
LDR = 90krad/hour
The trapping of holes in the STI oxide, origin of the leakage, happens in shallow traps: their de-trapping is very rapid at 25°C and active also at -30°C!

In LHC detector application the leakage will be much smaller than what observed during room-T fast irradiation in the lab: but it is not easy to forecast the quantitative behaviour… as seen already for Tech.A.
The source-drain leakage current in NMOS is very different in samples produced in 2 different Fabs

Regular 0.15/0.12 Vth transistors from Fab14 and Fab6
I/O transistors rated at 2.5V show a much more relevant radiation-induced degradation
The radiation tolerance of the ‘backup’ 130nm technology (now streamline) is at least as good as for Tech. A - for “core” transistors

Samples from Fab6 do not show any significant leakage current

The difference in the leakage current between the two Fabs highlights the sensitivity of the radiation tolerance to processing

Only one Fab has to be qualified and used for all runs (prototyping, production)
The natural radiation tolerance of the process should be regularly monitored
Qualification of every lot has to be performed

A report summarising all the available radiation results and containing guidelines will be soon published
Scaling...

65nm needs mainly for pixel FE ASICs and very high speed data communication (GBT-like)
The TID characterisation of transistors from the selected 65nm technology started around 2011

The study was targeted initially at a TID of up to 200Mrad, but was extended to 1Grad by the pixel community (RD53)
There will be no further comment about leakage currents, because we did not measure significant currents (for typical applications) in either NMOS transistors or FOXFETs.

The degradation of long and large transistors is limited: the thin gate oxide is radiation hard!

Irradiation conditions:
T = 25°C
Bias: |V_{gs}| = |V_{ds}| = 1.2V
Curves I_{d}-V_{g} in saturation
Radiation damage is severe in short and narrow channel transistors, where it depends on the **bias** and **temperature** applied both during and after irradiation.

Radiation-Induced Narrow Channel Effect (RINCE)
Radiation-Induced Short Channel Effect (RISCE)

![Graphs showing PMOS and NMOS arrays with various channel lengths and widths, along with ion current percentage change vs. TID (Total Ionizing Dose)](image)

T = 25°C
Bias: $|V_{gs}| = |V_{ds}| = 1.2$V
RINCE: Narrow channel PMOS transistors do not work above 500Mrad, while NMOS are working without large damage up to 1Grad.

Transistors’ size: $W=120\text{nm}$, $L=1\text{um}$

Irradiation conditions:
- $T = 25^\circ\text{C}$
- Bias: $|V_{gs}| = |V_{ds}| = 1.2\text{V}$
Transistors’ size: W=120nm, L=1um
Irradiation conditions:
* Bias:
 “Vgs” => |Vgs| = 1.2V, Vds=0V
 “Diode” => |Vgs| = |Vds|=1.2V
 “Gnd” => |Vgs|=Vds=0V

RINCE in PMOS depends on bias and temperature

Bias during irradiation is bad!

Annealing at high T is good!

Sub-zero T during irradiation is good
RISCE: Short channel PMOS are more damaged than NMOS
Damage occurs also in ELT transistors, hence it can not be due to the STI oxide

Transistors’ size: W=1um, L=60nm
Irradiation conditions:
- $T = 25^\circ C$
- Bias: $|V_{gs}| = |V_{ds}| = 1.2V$
RISCE can be conceptually represented by this cartoon

Pre-rad

Spacer

LDD

S D

After irradiation and/or annealing

Which defect? Which charge trapped? Where?

L=moderate size

Regions strongly influenced by the trapped charge

L=min size
Transistors’ size: $W=0.6\mu m$, $L=60\text{nm}$

Irradiation conditions:

* Bias:
 "Vgs" $\Rightarrow |Vgs|=1.2\text{V}$, $Vds=0\text{V}$
 "Diode" $\Rightarrow |Vgs|=|Vds|=1.2\text{V}$
 "Gnd" $\Rightarrow |Vgs|=Vds=0\text{V}$

Bias during irradiation is bad!

Sub-zero T during irradiation is good

Annealing at high T is neutral or good (for the most damaged devices)!
RISCE in PMOS

Bias during irradiation is mildly influential

Thermal energy during irradiation is bad!

Annealing at high T is very bad if performed under bias!!

Transistors’ size: W=0.6μm, L=60nm

Irradiation conditions:
* Bias:
 “Vgs” => |Vgs| = 1.2V, Vds=0V
 “Diode” => |Vgs|=|Vds|=1.2V
 “Gnd” => |Vgs|=Vds=0V

Annealing during irradiation is mildly influential

Thermal energy during irradiation is bad!!

Annealing at high T is very bad if performed under bias!!
The qualification procedures for CMOS foresee a 1-week annealing period post-irradiation at 100°C. This considerably worsens the performance of PMOS transistors.

Transistors’ size: W=0.6um, L=60nm
Irradiation conditions:
* Bias:
 “Diode” => |Vgs|=|Vds|=1.2V
The post-irradiation evolution in PMOS (V_{th} shift) is clearly a thermally activated process requiring the presence of bias!

Start of annealing at high T is at 50-55 hours

Transistors’ size: $W=0.6\, \text{um}$, $L=60\, \text{nm}$
Irradiation conditions:
* Bias:
 “Diode” => $|V_{gs}|=|V_{ds}|=1.2\, \text{V}$
Analog design

RISCE and RINCE can be hindered in analog design, where the designer can choose to avoid excessively narrow and short transistors. This has been confirmed in analog designs developed for radiation tolerance and irradiated to large doses.

Digital design

In digital design, the use of commercially available standard cells with minimum L transistors (and narrow ones as well) can lead to ASICs failure in some conditions at high doses. To ensure reliable functionality, we need to:
- use appropriate design safety margins
- use an appropriate qualification procedure

Are results of individual transistors under DC bias representative of the degradation of a digital circuit?
The large bias dependence of some of the observed degradations questions the applicability of the transistor-level results to estimate the response of digital circuits. In particular this is true for the short-channel PMOS and their post-irradiation evolution.

A specific study has been carried on an existing digital prototype (CMS tracker readout). The circuit was running at 40MHz during irradiation and annealing. The results hereafter are extracted from this work - courtesy of D.Ceresa and the MPA team.

IDEA: Find a data path failing at a certain voltage and frequency and observe how these vary with TID
The results from the shmoo plots are represented graphically as in this chart, as a function of TID.

Limited by the test system

Voltage range

40 MHz is the nominal frequency and the minimum frequency tested

Max. operating frequency [MHz]

TID [Mrad]
The test evidences 2 different effects

Continuous degradation, function of Vdd in the target digital logic

Degradation at high dose, independent on Vdd in the target logic, and annealing strongly and rapidly at high T

mixed-signal block with a delay cell using narrow transistors (with rather long L)

Signature of RINCE in PMOS
The continuous degradation has instead the signature of RISCE (in PMOS in particular).

Larger degradation for irradiation at higher T

Additional degradation during post-irradiation annealing at high T
Conclusions from the test of a digital prototype - in agreement also with measurements on 2 different SRAM designs

A qualification procedure could involve irradiation at room T followed by annealing at 100°C, the circuit having to pass both tests

Test during irrad. at room T catches this failure (due to narrow channel transistors)

Test after high-T annealing catches this degradation (due to short channel transistors)

The response of a digital circuit to TID can be correlated with the degradation induced by radiation on individual transistors, both for the narrow and the short channels

Digital designers **MUST take appropriate margins** that take into account the proven speed degradation of logic cells.

What is appropriate?
In the case below, a speed degradation of 3.1x is observed after 150Mrad + hight-T annealing…
Within RD53 (with the GBT and MPA teams) a work is ongoing to ‘modify’ the digital library and achieve larger tolerance to TID

Different modified cells are designed and tested, and a choice will be made by comparing their TID performance. Results are expected in summer
In some of the results above we can see analogies with the phenomenology observed in bipolar technologies subject to ELDRS (Enhanced Low Dose Rate Sensitivity)
A first experiment comparing damage at 2 different dose rates seems to point to an increased damage at lower dose rate.

Given the variability between transistors, this first result needed confirmation by more accurate experiments.

\[
\begin{align*}
T &= 25^\circ C \\
\text{HDR} &= 9 \text{Mrad/hour} \\
\text{LDR} &= 325 \text{krad/hour} \\
\text{ratio of the dose rate HDR/LDR} &= 27.7 \\
\text{all samples irradiated at HDR up to 50Mrad, then either at HDR or LDR} \\
\text{measurements averaged over 3 samples (HDR) and 2 samples (LDR)}
\end{align*}
\]
Results from an on-going irradiation with a 60Co source at even lower dose rate: the damage is larger!

Source at CERN Prevessin (CC60 facility from EN), many thanks to S.Danzeca, A.Thornton, M.Brucoli, M.Brugger, for their support in setting up the experiment - in particular for the dosimetry

On-going study within CERN EP-ESE-ME: G.Borghello, S.Michelis, D.Porret, S.Kulis, J.Alozy, ...

- **T** = 25°C
- HDR = 9Mrad/hour
- LDR = 35krad/hour
- ratio of the dose rate HDR/LDR=257
- Average of 3 transistors per Chip
My Hobby: Extrapolating

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
(some) tracker upgrades: 65nm CMOS

Upgrades: 130nm CMOS

ca. 2006

TID: 100Mrad to 1Grad

TID: 100Mrad to 1Grad

TID: 400Mrad

ca. 2011

Leakage in parasitics
RINCE
RISCE

Process dependent!
Fab dependent!
130nm

2 Technologies available for ASIC design
• The present streamline is recommended for all new designs, it appears good for the targeted TID levels

65nm

Short and narrow channel radiation-induced effects are strong (RINCE, RISCE). These are complex and make the choice of a qualification procedure and of appropriate design margins difficult, in particular for digital design

all processes

Radiation tolerance varies in different Fabs, and can change over time. We have to:
• only qualify and use one Fab
• monitor regularly the natural radiation tolerance
• carefully qualify each ASIC during the prototyping and production phases
New technologies: large opportunities...
...but sometimes also new troubles