

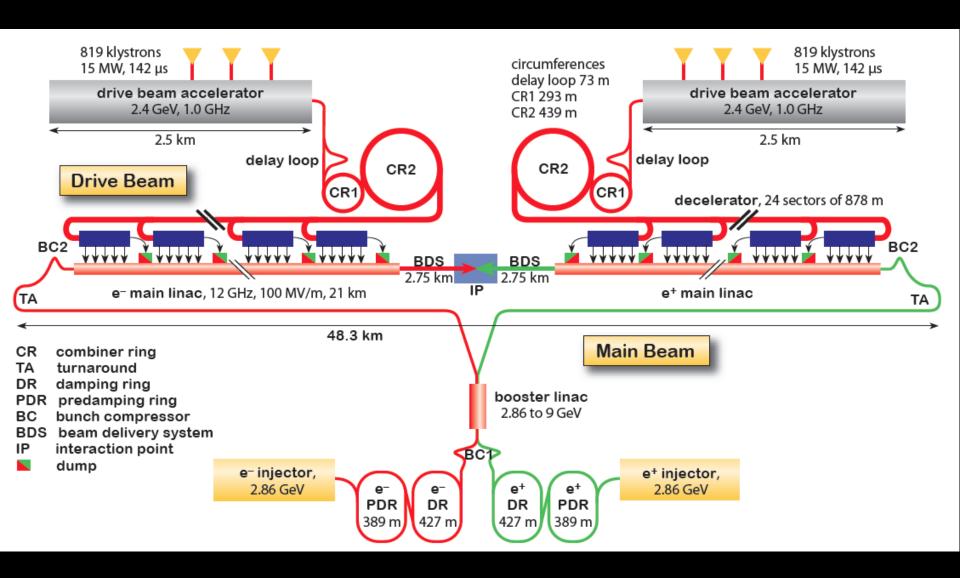
CLIC Detectors and Physics

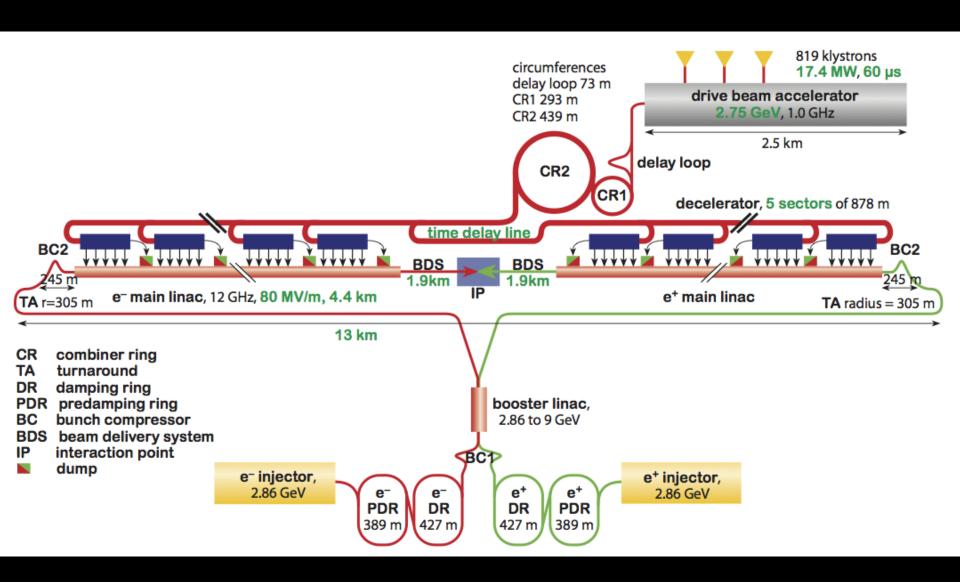
Jan Strube CERN

on behalf of the CLIC Detector and Physics study group

Outline

- The CLIC Accelerator
- Challenges for Detector Design
- The CLIC Detector and Physics Program
 - Simulation Studies
 - Detector Development
- Future Plans
- Summary

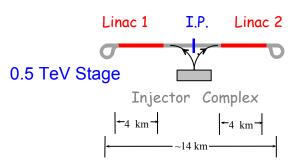

Organisation of CLIC Detector and Physics study

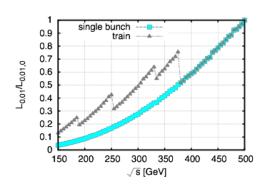

Belarus: NC PHEP Minsk; Czech Republic: Academy of Sciences Prague; Denmark: Aarhus Univ.; Germany: MPI Munich; Israel: Tel Aviv Univ.; Norway: Bergen Univ.; Romania: Inst. of Space Science; Serbia: Vinca Inst. Belgrade; Spain: Spanish LC network; UK: Cambridge Univ. + Oxford Univ.; USA: Argonne lab; + CERN

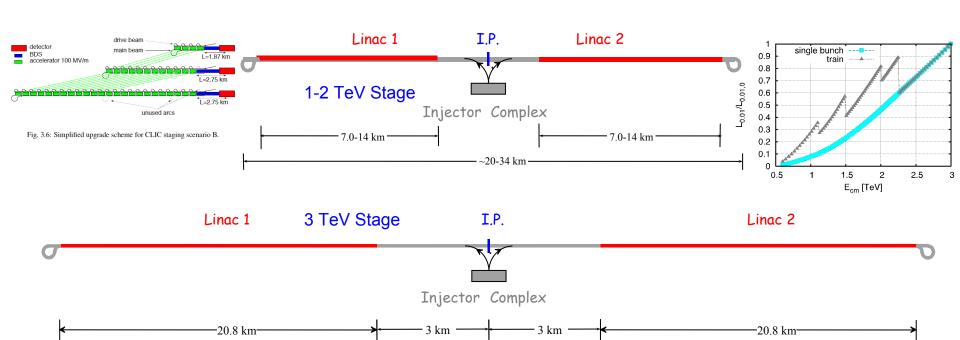
Pre-collaboration structure, based on a "Memorandum on Cooperation" http://lcd.web.cern.ch/LCD/Home/MoC.html

CLIC Layout at 3 TeV

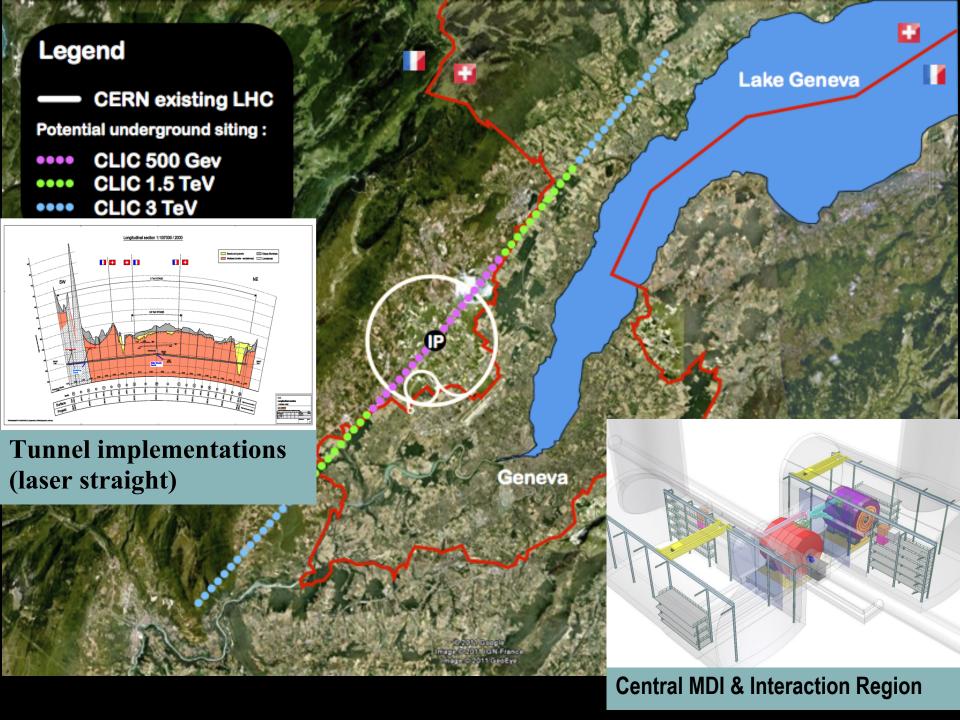
CLIC Layout at 500 GeV



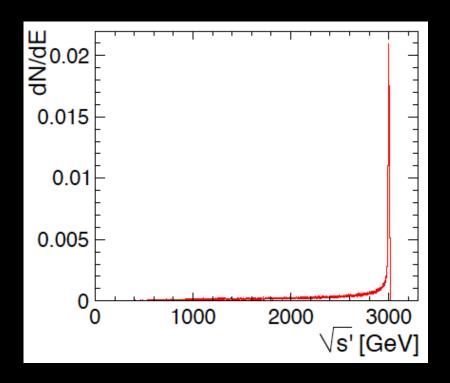

CLIC Staging Scenario


CLIC two-beam scheme compatible with energy staging to provide the optimal machine for a large energy range

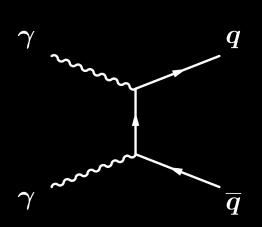
Lower energy machine can run most of the time during the construction of the next stage.


Physics results will determine the energies of the stages

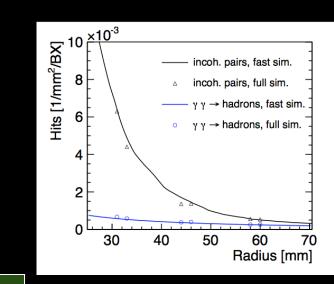
48.2 km


The CLIC Beams

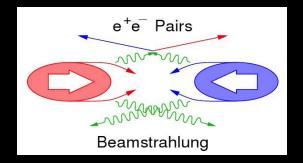
Parameter	CLIC at 3 TeV
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴
BX separation	0.5 ns
#BX / train	312
Train duration (ns)	156
Rep. rate	50 Hz
σ_{x} / σ_{y} (nm)	≈ 45 / 1
σ _z (μm)	44


Reduction of luminosity (small effect for processes far from threshold)

Systematic effect on reconstruction, for example, slepton reconstruction



√s' / √s	0.5 TeV	3 TeV
> 99 %	62 %	35 %
> 90 %	89 %	54 %
> 70 %	99 %	76 %
> 50 %	~100 %	88 %


Background to Physics studies

√s (GeV)	N(γγ→hadrons) per BX
350	0.05
500	0.3
1400	1.3
3000	3.2

Coherent e⁺e⁻ pairs: 7 x 10⁸ per BX, very forward Incoherent e⁺e⁻ pairs: 3 x 10⁵ per BX, rather forward

Incoherent pair production:

Increases occupancy in inner tracker layers and forward region → impact on detector segmentation and pattern recognition

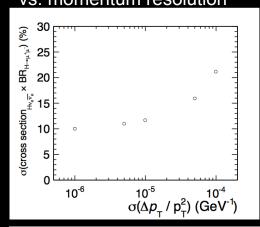
<u>yy</u> → hadrons (at 3 TeV):

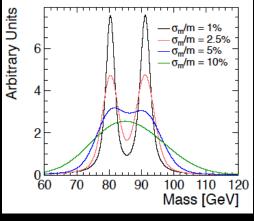
Deposit up to 19 TeV of energy in the calorimeters ~ 5000 Tracks with 7.3 TeV

Impact is minimized by using advanced reconstruction techniques

Physics Goals Drive Detector Requirements h - p*p*measur

Momentum resolution


Higgs Recoil, $h \rightarrow \mu^{+}\mu^{-}$: $\sigma(p_{T})/p_{T}^{-2} \sim 2x10^{-5} \text{ GeV}^{-1}$


Jet Energy Resolution

Separation of heavy bosons, Gaugino, Triple Gauge Coupling $\sigma(E)/E = 3.5\%-5\%$

Flavor Tagging

h → μ⁺μ⁻ measurement uncertainty vs. momentum resolution

W-Z separation

 $\sigma_{r\phi} \approx 5 \,\mu\mathrm{m} \oplus 15 \,\mu\mathrm{m}/(p[\mathrm{GeV}]\sin^{\frac{3}{2}}\theta)$

Challenges for Detector Design

PFA calorimetry

Calorimeters inside coil (track-shower matching) Full shower containment for operation at 3 TeV

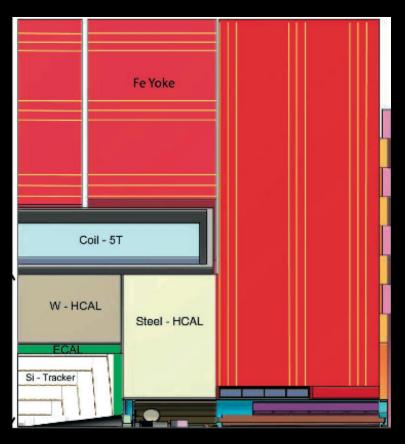
Tracking

Low material budget

Excellent impact parameter resolution

Forward region

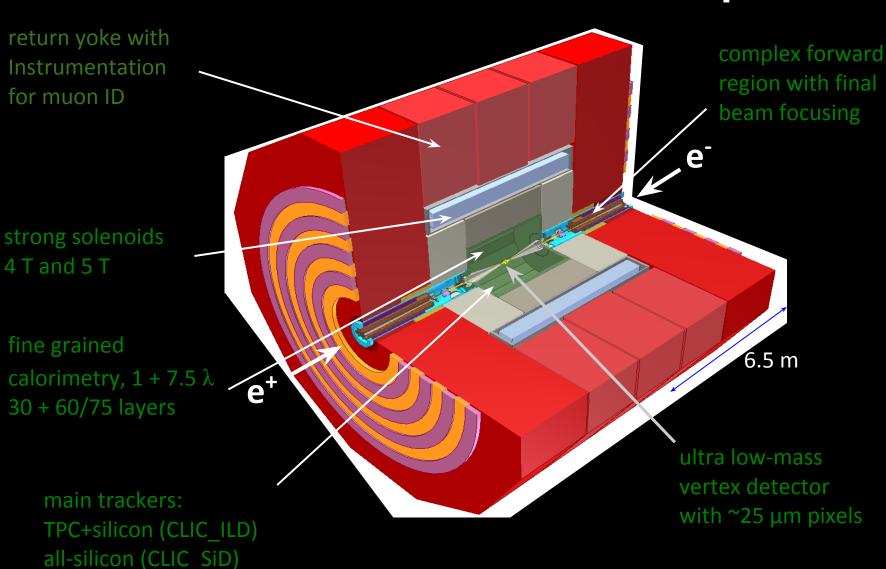
QD0 inside detector \leftrightarrow compact design \leftrightarrow 4π coverage


Detector Concepts for CLIC

CLIC_ILD

~7 m

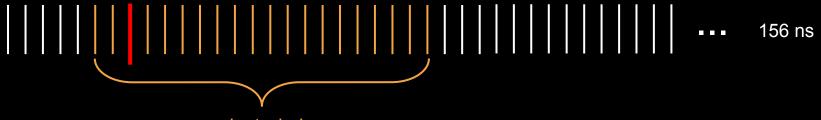
Fe Yoke Coil - 4T W-HCAL Steel HCAL TPC


CLIC_SiD

Gaseous Tracking 4 T Field

All- Silicon Tracker 5 T Field Cost-constrained Design

CLIC detector concepts

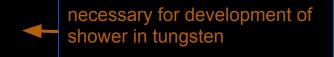


CLIC Detector Concepts Summary

	CLIC_ILD	CLIC_SiD
Tracker	TPC, r = 1.8 m	Silicon, r = 1.2 m
B-field	4 T	5 T
ECAL	SiW	SiW
HCAL barrel	W-Scint	W-Scint
HCAL endcap	Steel-Scint	Steel-Scint

Detector Readout

Triggerless readout of the whole bunch train
Starting time of Physics event inside the train is identified offline

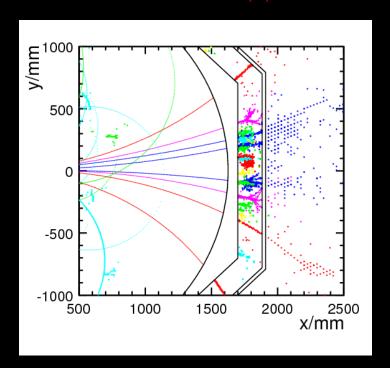


rooc		t winc	
1040	16) 1		11 11/1/
I Cac	ıvu		

Subdetector	Reco Window	Hit Resolution
ECAL	10 ns	~ 1 ns
HCAL Endcap	10 ns	~ 1 ns
HCAL Barrel	100 ns	~ 1 ns
Silicon Detectors	10 ns	10 ns / √12
TPC (CLIC_ILD)	Entire train	n/a

19 TeV → 1.2 TeV remaining in reconstruction window

Passed to track finding and PFA reconstruction


Introduction to Particle Flow Reconstruction

Typical jet contents:

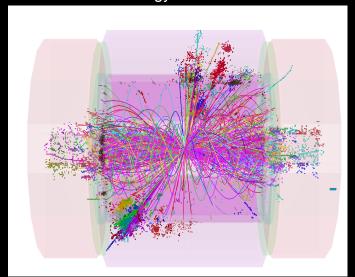
60% charged particles $\sigma(p_T)/p_T^2 \sim 2x10^{-5} \text{ GeV}^{-1}$

30% photons $\sigma(E)/E < 20\% / \sqrt{E}$

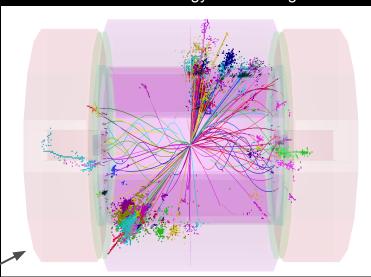
10% neutral hadrons σ(E)/E > 50% / √

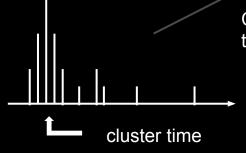
Ideally, fully reconstruct the shower for each particle and match tracks to showers.

At higher jet energies, confusion (mis-matching of energy depositions and particles) deteriorates the resolution.


At even higher energies, leakages becomes a factor in the jet energy resolution.

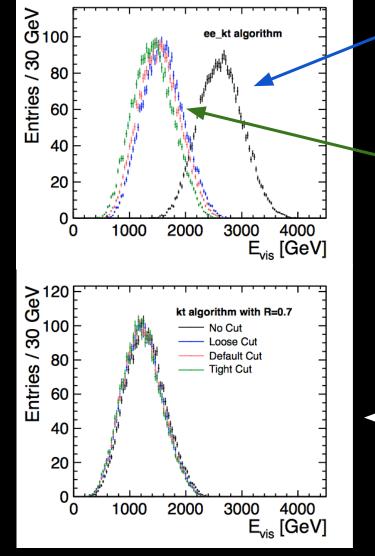
PFA possible without high granularity

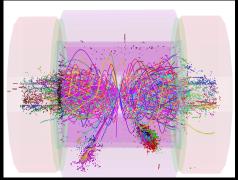

At CLIC: High granularity essential for background reduction


1.2 TeV "extra energy" in reco window

20 BX

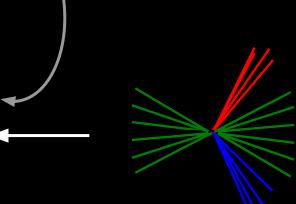
100 GeV "extra energy" after timing cuts



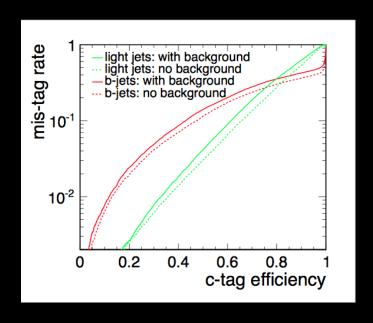


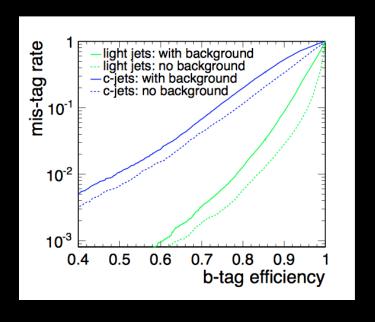
Combination of time and p_T cuts

3 sets of cuts defined: loose, default, tight


Jet Finding at CLIC

Durham - style jet finders used in exclusive mode


sensitive to background



Analyses in CDR used k_T algorithm as implemented in FastJet

"Beam Jets" pick up most of the forward boosted background

Flavor Tagging at CLIC

Efficient tagging of b- and c-jets is a crucial component of the Higgs program at a linear collider

Using (basically) the ZVTOP algorithm as implemented by the LCFI collaboration

Background somewhat deteriorates the tagging efficiency

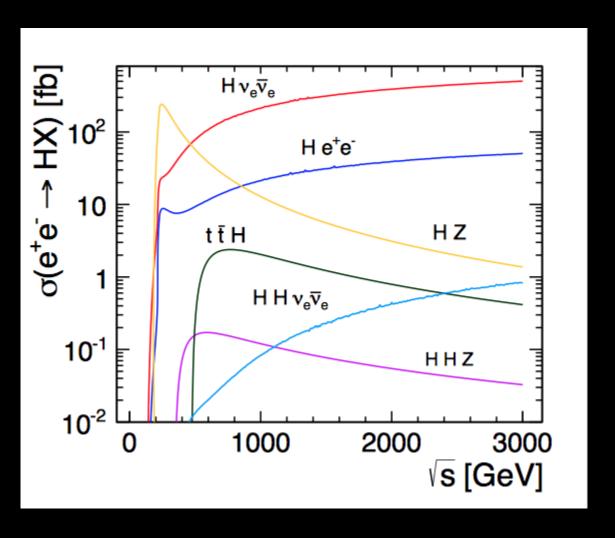
Reconstruction Summary

Intense beams at CLIC pose a challenge for the reconstruction:

19 TeV additionally deposited in the calorimeters

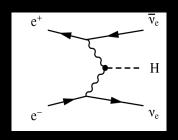
Three ways to reduce impact:

- 1. Reconstruction time slice:
 - Identify interesting event offline and remove out-of-time hits
- 2. Reconstructed particle time:
 - Compute the time of the particle from the (energy-weighted) average of the calorimeter hits. Remove low- p_{T} , late arriving particles
- 3. Jet reconstruction:
 - Beam jets pick up a lot of the forward-boosted background

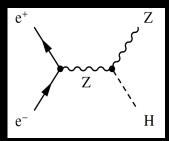

Physics Studies at CLIC

Studies have been done with detailed detector simulation

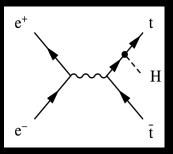
Background taken into account

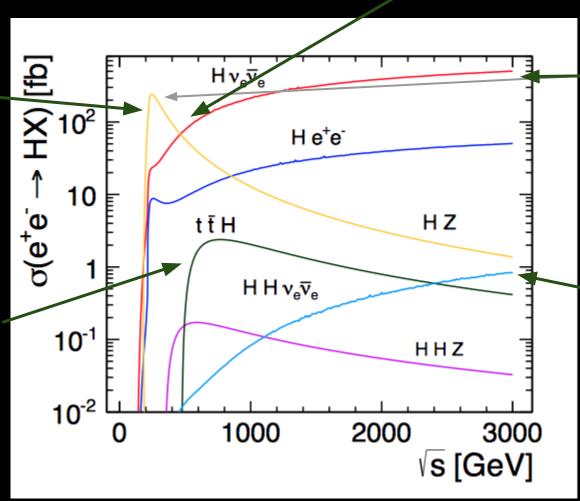

- (Standard Model) Higgs Studies
- Studies of Physics
 Beyond the Standard Model

Higgs Physics at CLIC

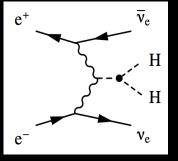


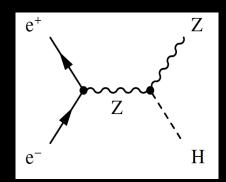
Higgs Physics at CLIC

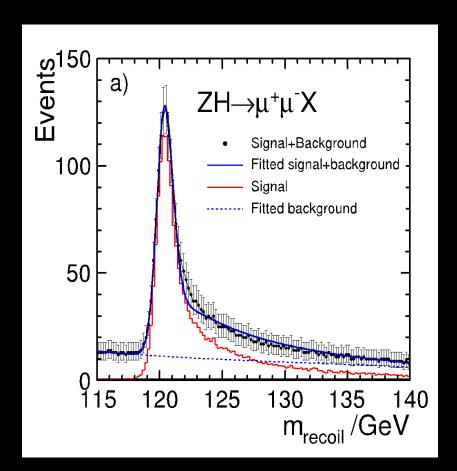

Higgs width



Higgs Recoil method: First sensitivity to invisible decays


Top Yukawa coupling




Higgs BR: second generation fermions c quarks, muons

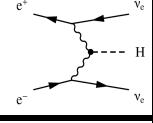
Higgs selfcoupling: < 20%

Higgs Recoil Method

Reconstruct the Z in the di-muon channel

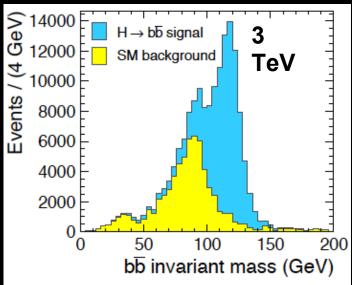
Well-known value for E_{CM} allows to plot the recoil against the Z

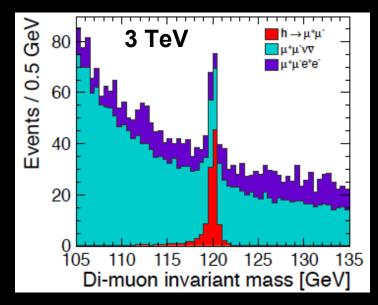
No information about the Higgs decay enters this plot

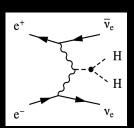

→ sensitivity to invisible decays

Absolute measurement of gauge coupling, limited only by beamstrahlung

$$rac{oldsymbol{\Delta}\sigma}{\sigma}pprox \mathbf{4}\% \qquad rac{oldsymbol{\Delta}\mathbf{g}_{\mathrm{HZZ}}}{\mathbf{g}_{\mathrm{HZZ}}}pprox \mathbf{2}\%$$

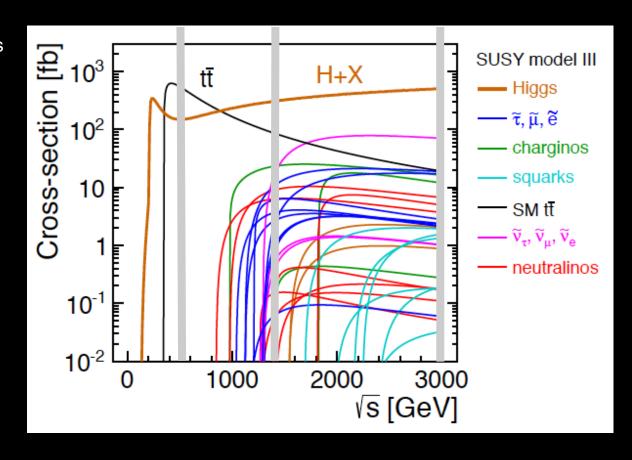

Higgs BR measurements


at 3 TeV



GEANT4-based detector simulation studies Realistic simulation of pile-up background achievable measurement uncertainty on $h \rightarrow bb$: 0.22% $h \rightarrow mu \ mu$: 15%

 $h \rightarrow cc: 3.2\%$


tri-linear self-coupling: ~20% (in progress)

Physics Beyond the Standard Model

First stage defined by physics 350 GeV / 500 GeV (Higgs, top)

Later stages guided by future observations

Staging scenario A: Stage 1: 500 GeV Stage 2: 1400 GeV Stage 3: 3000 GeV

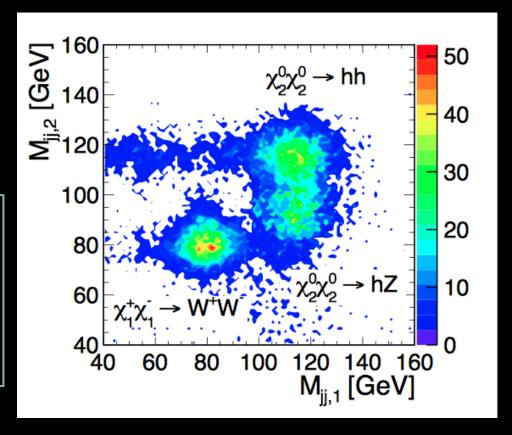
Gaugino Pair Production

$$egin{aligned} \mathbf{e^+e^-} &
ightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^-
ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \mathbf{W^+W^-} \ \mathbf{e^+e^-} &
ightarrow \widetilde{\chi}_2^0 \widetilde{\chi}_2^0
ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \mathbf{hh} \ \mathbf{e^+e^-} &
ightarrow \widetilde{\chi}_2^0 \widetilde{\chi}_2^0
ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \mathbf{Zh} \end{aligned}$$

Signature: 4 Jets + missing Energy

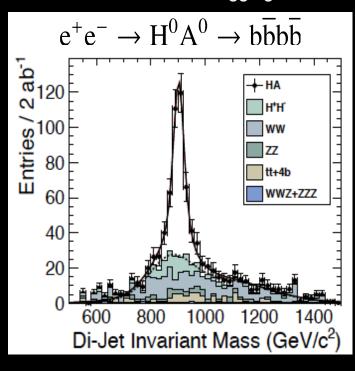
Separation of heavy bosons based on reconstructed invariant mass

$$\sigma(\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}) = 10.6 \,\text{fb} \pm 0.25 \,\text{fb}$$

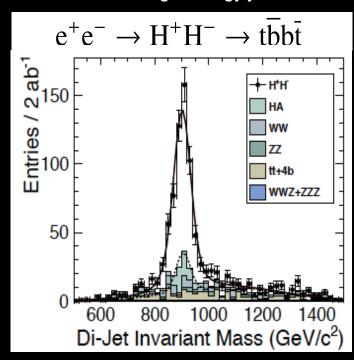

$$\mathbf{m}(\widetilde{\chi}^{\pm}) = 643.2 \,\text{GeV} \pm 7 \,\text{GeV}$$

$$\sigma(\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}) = 3.3 \,\text{fb} \pm 0.11 \,\text{fb}$$

$$\mathbf{m}(\widetilde{\chi}_{2}^{0}) = 643.1 \,\text{GeV} \pm 10 \,\text{GeV}$$


only statistical uncertainty quoted

Detailed Detector Simulation including background 3 TeV CLIC



Heavy Higgs Bosons

Test of flavor tagging in boosted jets and reconstruction of high-energy jets

3 TeV 2 ab⁻¹

$$\mathbf{m}(\mathbf{H}^{+}/\mathbf{H}^{-}) = 906.3 \,\mathrm{GeV} \pm 2.4 \,\mathrm{GeV}$$
 1.1 fb $\mathbf{m}(\mathbf{A}^{0}/\mathbf{H}^{0}) = 902.4 \,\mathrm{GeV} \pm 2.8 \,\mathrm{GeV}$ 0.5 fb

Sensitivity nearly up to 1/2 √s

Physics Summary

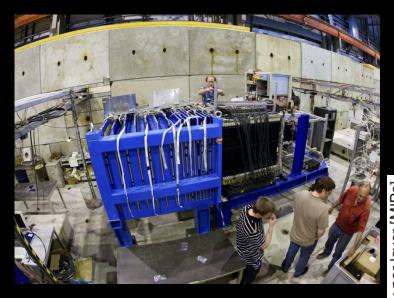
The CLIC environment at 3 TeV presents a unique opportunity for physics at the TeraScale

Detailed simulation studies show that the impact of the background can be controlled

Excellent detector performance allows precision measurements of heavy objects even at 3 TeV

Hardware R&D

Hadronic Calorimeters

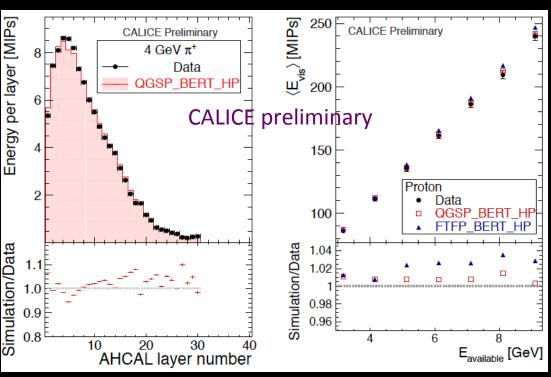

Scintillator Plates in W absorber structure

Glass RPC in W absorber structure

Vertex Detector Engineering
Vertex Detector Pixels

Analog HCAL

CERN SPS 2011


Validation of GEANT 4 models in tungsten stack

Good agreement found

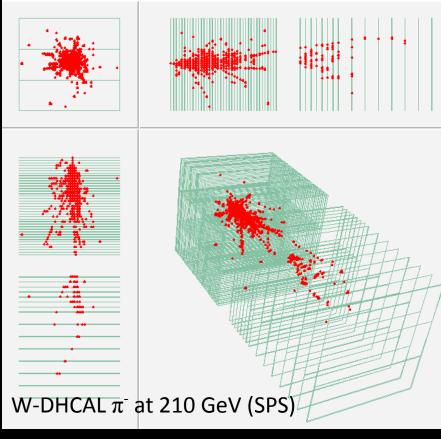
HCAL tests in 2010+2011 10 mm thick **Tungsten absorber** plates scintillator active layers, 3×3 cm² cells

longitudinal shower profile, pions

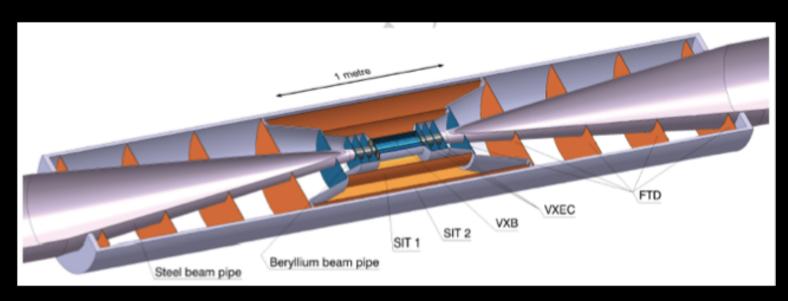
visible Energy, protons

Digital HCAL

54 glass RPC chambers, 1m² each


PAD size 1×1 cm²
Digital readout (1 threshold)
100 ns time-slicing

Fully integrated electronics


Main DHCAL stack (39) + tail catcher (15)

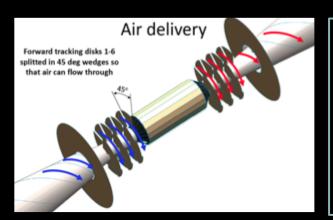
CERN test setup includes fast readout RPC (T3B)

~ 500,000 channels World record for hadronic calorimetry

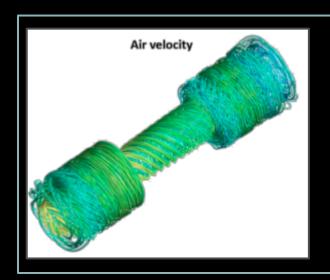
Inner Tracking Detectors

R&D

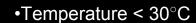
Material budget goal: 0.2% X₀ per layer

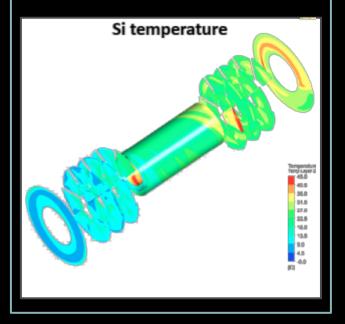

Time stamping: 10 ns

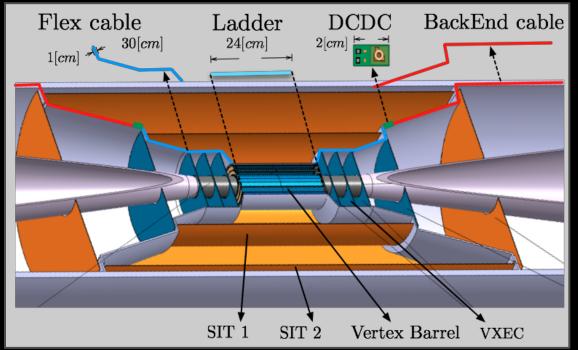
Excellent flavor tagging: small pixels ~25x25 µm²,

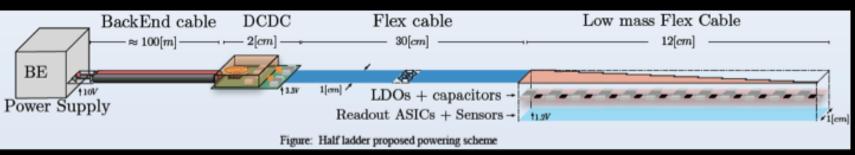

small inner radius (2.7 cm)

Radiation level $<10^{11} \, n_{eq} \, cm^{-2} year^{-1} <= 10^4 \, lower than LHC$

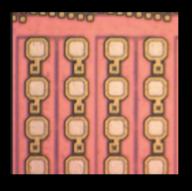

Low-mass Cooling


ANSYS finite element simulation of air-flow cooling: Spiral disk geometry allows for air flow into barrel Sufficient heat removal


Mass Flow: 20.1 g/s
Average velocity:
@ inlet: 11.0 m/s
@ z=0: 5.2 m/s
@ outlet: 6.3 m/s


- •Except barrel layer 2 (40°C)
- •Conduction not taken into account

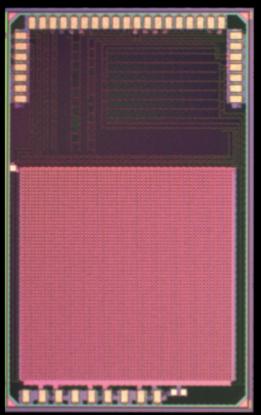
Power Delivery


DC/DC converters outside pixelsensor area
Flexible Kapton cables with Al conductor for power delivery
Power pulsing @ 50 Hz,
reducing avg. power
local energy storage and voltage regulation with
Si capacitors (~10 μF/chip) and LDO regulators

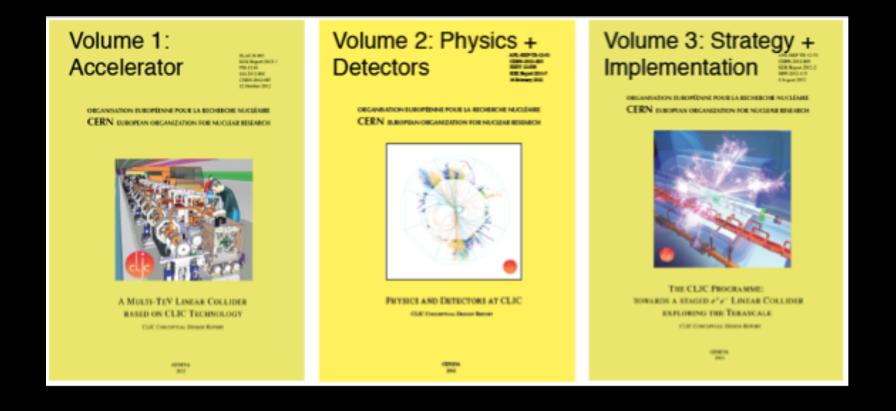
CLICPix demonstrator

Hybrid approach pursued: (<= other options possible)

- •Thin (~50 μm) silicon sensors (Micron, CNM, VTT)
- •Thinned High density ASIC in very-deep-sub-micron:
- •TimePix3, Smallpix <= R&D steps
- CLICpix
- Low-mass interconnect
- Micro-bump-bonding (Cu-pillar option, Advacam)
- Through-Silicon-Vias (R&D with CEA-Leti)
- Chip-stitching



CLICpix


64×64 pixel demonstrator just arrived from foundry

- •65 nm technology
- •25×25 µm² pixels
- •4-bit TOA and TOT information
- •10 nsec time-slicing
- •Power 2 W/cm² (continuous)

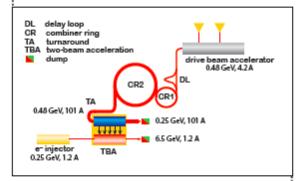
With sequential power pulsing 50 mW/cm²

- •CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-003, https://edms.cern.ch/document/1234244/
- •CLIC CDR (#2), Physics and Detectors at CLIC, CERN-2012-003, arXiv:1202.5940
- •CLIC CDR (#3), The CLIC Programme: towards a staged e+e- Linear Collider exploring the Terascale, CERN-2012-005, <a href="http://arxiv.com/ht

CLIC strategy and objectives

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

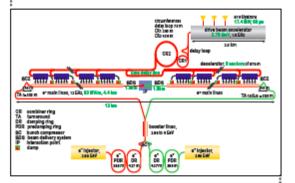

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.


2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

for data-taking as the LHC programme reaches completion.

Faster implementation possible, (e.g. for lower-energy Higgs factory): klystron-based initial stage

plans for the phase 2013-2016

Further exploration of the physics potential

- •Complete picture of Higgs prospects at ~350 GeV, ~1.4 TeV, ~3 TeV
- Discovery reach for BSM physics
- •Sensitivity to BSM through high-precision measurements

Drives the CLIC staging strategy

Detector Optimisation studies

- •Optimisation studies linked to physics (e.g aspect ratio, forward region coverage);
- •Interplay between occupancies and reconstruction;
- •Interplay between technology R&D and simulation models.

Technology demonstrators

- Many common developments with ILC
- Complemented with CLIC requirements

R&D objectives: 2013-2016

R&D => technology demonstrators

Implementation examples demonstrating the required functionality

Vertex detector

Demonstration module, meeting requirements of high precision, 10 ns time stamp and ultra-low mass

Main tracker

Demonstration modules, including manageable occupancies in the event reconstruction

Calorimeters

Demonstration modules, technological prototypes + addressing control of cost

Electronics

Demonstrators, in particular in view of power pulsing

Magnet systems

Demonstrators of conductor technology, safety systems and moveable service lines

Engineering and detector integration

Engineering design and detector integration harmonized with hardware R&D demonstrators

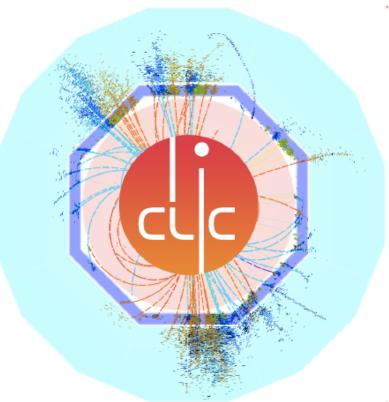
Challenging and interesting detector technologies
Considered feasible in a 5-year R&D program

summary and outlook

Summary of CLIC detector & physics CDR studies

- •Feasibility of precision physics measurements demonstrated
- •Staged implementation of CLIC => large potential for SM and BSM physics

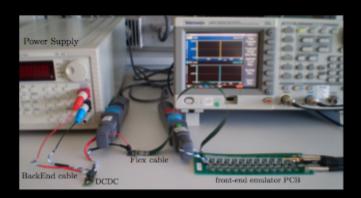
Good progress with understanding detectors at CLIC


- Based on ILD and SiD concepts
- Detector requirements now well understood
- •=> challenging, but feasible through realistic R&D

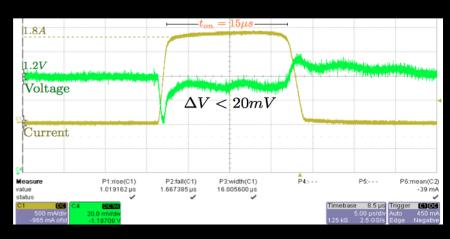
Development program for the next CLIC phases

- •Anticipating energy frontier machine choice ~2017
- Anticipating start of construction by ~2023

Welcome to join!

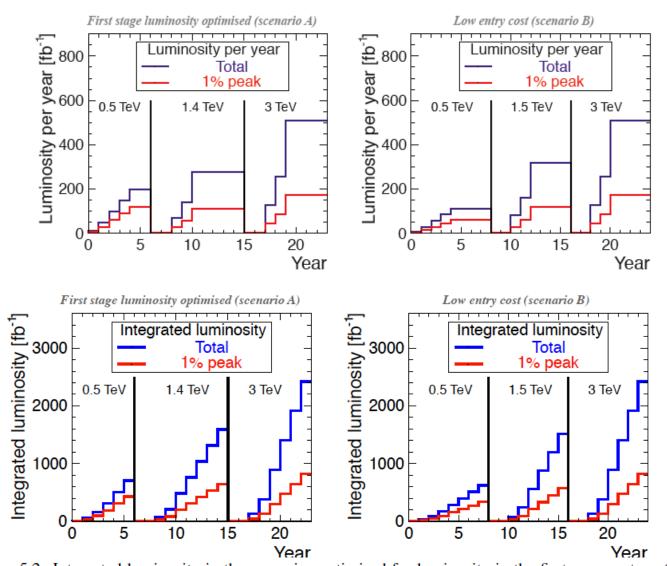

lcd.web.cern.ch/lcd/
http://lcd.web.cern.ch/LCD/Home/MoC.html

Backup


Power Pulsing Measurements

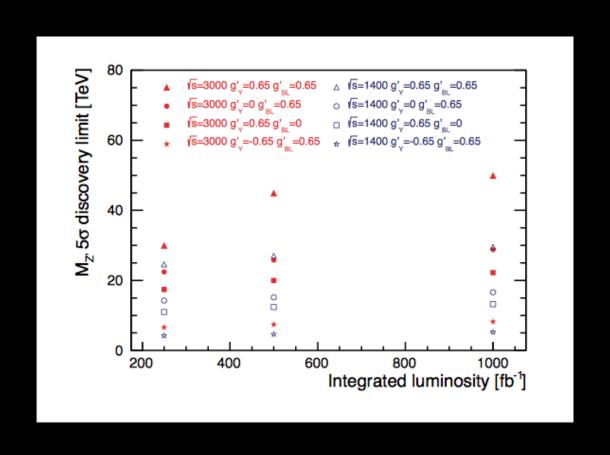
Test setup with active loads emulating analog pixel F/E:

- Equivalent thickness cable+LDO+cap.:0.145% X0 / layer in vtx region
- Power pulsing at 50 Hz
- •Load current of 2 A (half ladder) during 15 μs
- Monitor load voltages and currents
- •Observed ripple ΔV< 20 mV, acceptable for CLICPix
- •Agreement between measurement and simulation


Measurement

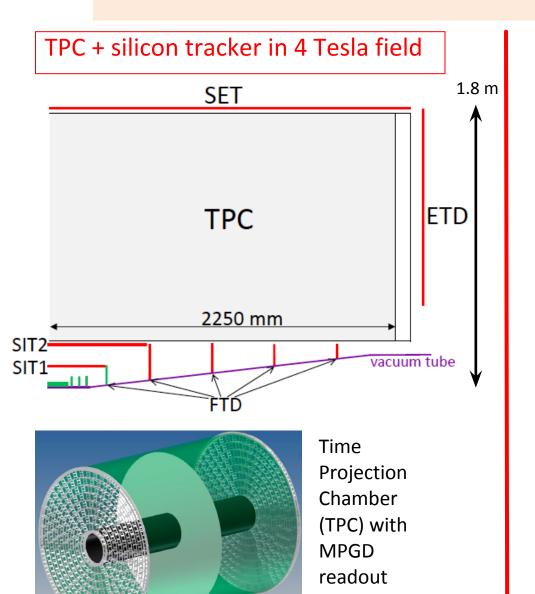
Simulation

Possible luminosity examples

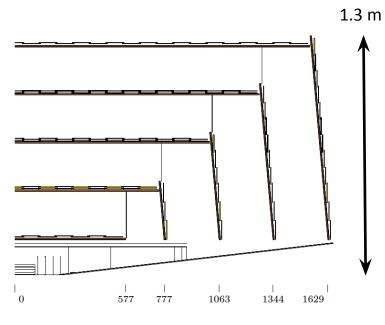


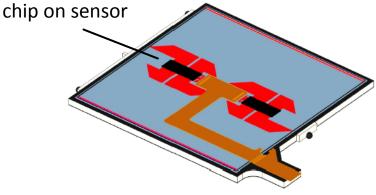
Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

Target figures: >600 fb⁻¹ at first stage, 1.5 ab⁻¹ at second stage, 2 ab⁻¹ at third stage


Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

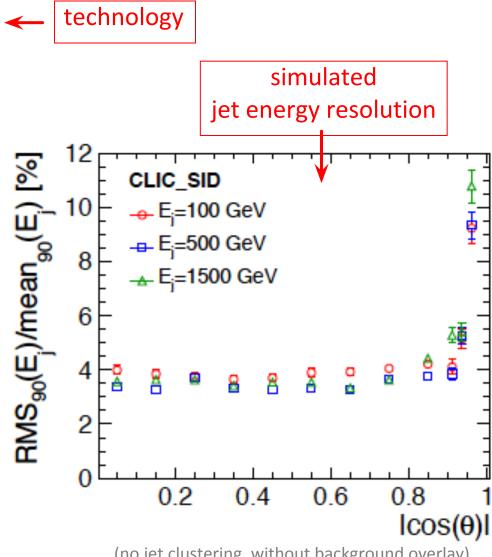
Z' Sensitivity Study




CLIC_ILD ✓ and CLIC_SiD \square tracker

all-silicon tracker in 5 Tesla field

PFA calorimetry at CLIC


ECAL

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² 30 layers in depth

HCAL

Several technology options: scint. or gas Tungsten (barrel), steel (endcap) cell sizes 9 cm² (analog) or 1 cm² (digital) 60-75 layers in depth Total depth 7.5 A

High precision on jets ECAL +HCAL have to fit inside coil CLIC needs Tungsten absorber in HCAL Requires beam tests to validate Geant4

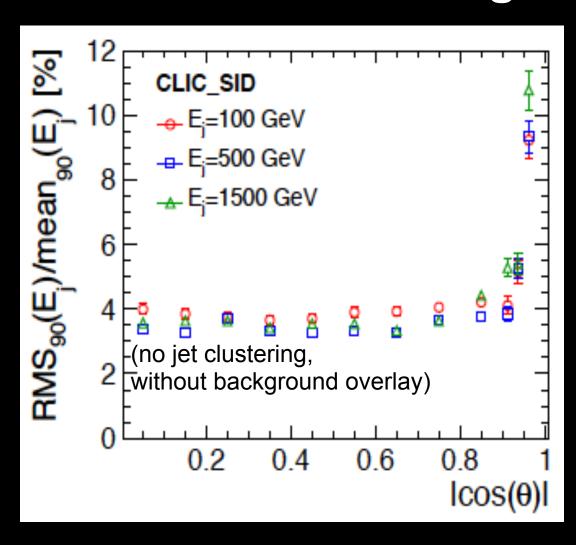
(no jet clustering, without background overlay)

Higgs Summary

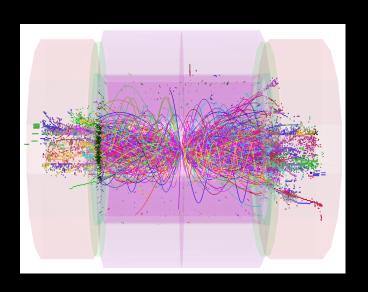
Higgs studies for $m_H = 120 \text{ GeV}$

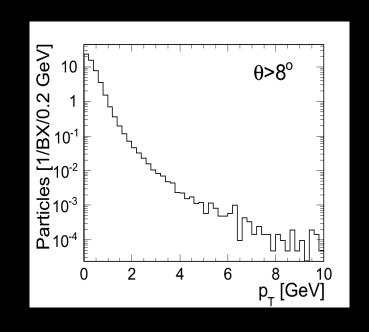
$\sqrt{s} \ ({ m GeV})$	Process	Decay mode	Measured quantity	Unit	Generator value	Stat. error	Comment
350			σ	fb	4.9	4.9%	Model
		$ZH o \mu^+\mu^- X$	Mass	${ m GeV}$	120	0.131	independent, using Z -recoil
500	SM Higgs	ZH o qar q qar q	$\sigma \times \mathbf{BR}$	fb	34.4	1.6%	ZH o qar q qar q
	${\bf production}$		Mass	${ m GeV}$	120	0.100	mass reconstruction
500		ZH, H uar u	$\sigma \times \mathbf{BR}$	fb	80.7	1.0%	Inclusive
		$ ightarrow u ar{ u} q ar{q}$	Mass	${ m GeV}$	120	0.100	sample
1400		$H o au^+ au^-$			19.8	<3.7%	
3000	WW	H o bar b	$\sigma \times \mathbf{BR}$	fb	285	0.22%	
	fusion	$H \to c\bar{c}$ $H \to \mu^+ \mu^-$			$\begin{array}{c} 13 \\ 0.12 \end{array}$	$3.2\% \ 15.7\%$	
1400 3000	WW fusion		$egin{array}{l} { m Higgs} \ { m tri-linear} \ { m coupling} \ { m \it g}_{HHH} \end{array}$			$^{\sim\mathbf{20\%}}_{\sim\mathbf{20\%}}$	

SUSY Summary


\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
1.4	Sleptons production	$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$egin{array}{c} \sigma \ ilde{\ell} \ ext{mass} \ ilde{\chi}_1^0 \ ext{mass} \end{array}$	fb GeV GeV	1.11 560.8 357.8	2.7% $0.1%$ $0.1%$
		$\widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$egin{array}{c} \sigma \ ilde{\ell} ext{ mass} \ ilde{\chi}_1^0 ext{ mass} \end{array}$	fb GeV GeV	5.7 558.1 357.1	$1.1\% \\ 0.1\% \\ 0.1\%$
		$\widetilde{\nu}_e \widetilde{\nu}_e \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- W^+ W^-$		$\sigma \ ilde{\ell} \ ext{mass} \ ilde{\chi}_1^{\pm} \ ext{mass}$	fb GeV GeV	5.6 644.3 487.6	3.6% $2.5%$ $2.7%$
1.4	Stau production	$\widetilde{ au}_1^+ \widetilde{ au}_1^- o au^+ au^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	Ш	$\widetilde{ au}_1$ mass σ	${ m GeV} \ { m fb}$	517 2.4	$2.0\% \\ 7.5\%$
1.4	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	III	$\widetilde{\chi}_1^{\pm}$ mass σ	${ m GeV} \ { m fb}$	487 15.3	$0.2\% \\ 1.3\%$
	Neutralino production	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \to h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\widetilde{\chi}_2^0$ mass σ	${ m GeV} \ { m fb}$	487 5.4	$0.1\% \\ 1.2\%$

Results of detailed simulation study for a given SUSY model (model III) CLIC operated at 1.4 TeV, 1.5 ab⁻¹ Results from earlier stage(s) not taken into account


Susy models I & II


\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$egin{array}{l} \sigma \ ilde{\ell} \ ext{mass} \ ilde{\chi}_1^0 \ ext{mass} \end{array}$	fb GeV GeV	0.72 1010.8 340.3	2.8% $0.6%$ $1.9%$
3.0	Sleptons production	$\widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	п	$egin{array}{l} \sigma \ ilde{\ell} \ ext{mass} \ ilde{\chi}_1^0 \ ext{mass} \end{array}$	fb GeV GeV	6.05 1010.8 340.3	$0.8\% \ 0.3\% \ 1.0\%$
		$\begin{array}{l} \widetilde{e}_L^+ \widetilde{e}_L^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- h h \\ \widetilde{e}_L^+ \widetilde{e}_L^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- Z^0 Z^0 \end{array}$		σ	fb	3.07	7.2%
		$\widetilde{\nu}_e \widetilde{\nu}_e \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- W^+ W^-$		$\sigma \ ilde{\ell} \ ext{mass} \ ilde{\chi}_1^{\pm} \ ext{mass}$	$egin{array}{c} { m fb} & { m GeV} \ { m GeV} & { m GeV} \end{array}$	13.74 1097.2 643.2	$2.4\% \ 0.4\% \ 0.6\%$
3.0	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$. II	$\widetilde{\chi}_1^{\pm}$ mass σ	${ m GeV} \ { m fb}$	643.2 10.6	$1.1\% \\ 2.4\%$
	Neutralino production	$\widetilde{\chi}_2^0\widetilde{\chi}_2^0 o h/Z^0 h/Z^0\widetilde{\chi}_1^0\widetilde{\chi}_1^0$		$\widetilde{\chi}_2^0$ mass σ	${ m GeV} \ { m fb}$	$643.1 \\ 3.3$	$1.5\% \ 3.2\%$
3.0	Production of right-handed squarks	$\widetilde{q}_R \widetilde{q}_R \to q \overline{q} \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	I	$\begin{matrix} \mathbf{Mass} \\ \sigma \end{matrix}$	GeV fb	$1123.7 \\ 1.47$	$0.52\% \ 4.6\%$
3.0	Heavy Higgs production	$H^0A^0 o bar b bar b$	I	Mass Width	${ m GeV} \ { m GeV}$	902.4	$0.3\% \ 31\%$
		$H^+H^- o t ar b b ar t$		Mass Width	${ m GeV} \ { m GeV}$	906.3	$0.3\% \\ 27\%$

PFA Performance w/o background

Background Properties

