Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2011 dataset)

Urs Langenegger
(PSI)

2012/05/30

▷ Introduction
▷ Candidate(s) selection
▷ Data/MC validation
▷ Pileup independence
▷ Search Analysis
▷ Results
Motivation: Search for New Physics

- **Decays highly suppressed in Standard Model** (Buras 2010)
 - effective FCNC, helicity suppression
 - SM expectation:
 \[
 \begin{align*}
 \mathcal{B}(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) &= (3.2 \pm 0.2) \times 10^{-9} \\
 \mathcal{B}(B^{0} \rightarrow \mu^{+}\mu^{-}) &= (1.0 \pm 0.1) \times 10^{-10}
 \end{align*}
 \]
 - Cabibbo-enhancement \(|V_{ts}| > |V_{td}|\) of \(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\) over \(B^{0} \rightarrow \mu^{+}\mu^{-}\)
 - only in MFV models

- **Sensitivity to new physics**
 - 2HDM: \(\mathcal{B} \propto (\tan \beta)^{4}m_{H^{+}}\); MSSM: \(\mathcal{B} \propto (\tan \beta)^{6}\)
 - sensitivity to extended Higgs boson sectors
 - Constraints on parameter regions
 - \(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\) (and \(B^{0} \rightarrow \mu^{+}\mu^{-}\)) considered as golden channel(s)
 - high sensitivity to new physics
 - (very) small theoretical uncertainties
 - comparable in sensitivity to \(\mu \rightarrow e\gamma, B \rightarrow X\nu\bar{\nu}\)

Urs Langenegger
Search for \(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\) and \(B^{0} \rightarrow \mu^{+}\mu^{-}\) in CMS (2012/05/30)
State of the art (upper limit at 95%CL)

- At the Tevatron

<table>
<thead>
<tr>
<th>Upper limit</th>
<th>$B_s^0 \rightarrow \mu^+\mu^-$</th>
<th>$B^0 \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>$5.1(4.0) \times 10^{-8}$</td>
<td>n/a</td>
</tr>
<tr>
<td>CDF2</td>
<td>$4.0(1.5) \times 10^{-8}$</td>
<td>6.0×10^{-9}</td>
</tr>
</tbody>
</table>

1) 6.1 fb$^{-1}$, PL, B693, 539

2) 7 fb$^{-1}$, PRL, 107, 191801

- At the LHC:

<table>
<thead>
<tr>
<th>Upper limit</th>
<th>$B_s^0 \rightarrow \mu^+\mu^-$</th>
<th>$B^0 \rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS3</td>
<td>$1.9(1.8) \times 10^{-8}$</td>
<td>3.6×10^{-9}</td>
</tr>
<tr>
<td>LHCb4</td>
<td>$1.4(1.3) \times 10^{-8}$</td>
<td>3.2×10^{-9}</td>
</tr>
<tr>
<td>ATLAS5</td>
<td>$2.2(2.3) \times 10^{-8}$</td>
<td>n/a</td>
</tr>
<tr>
<td>CMS6</td>
<td>$7.7(8.4) \times 10^{-9}$</td>
<td>1.8×10^{-9}</td>
</tr>
<tr>
<td>LHCb7</td>
<td>$4.5(7.2) \times 10^{-9}$</td>
<td>1.0×10^{-9}</td>
</tr>
</tbody>
</table>

3) 1.1 fb$^{-1}$, PRL, 107, 191802
4) 0.4 fb$^{-1}$, PL, B708, 55
5) 2.4 fb$^{-1}$, arXiv:1204.0735 [hep-ex]
6) 5 fb$^{-1}$, JHEP 04(2012), 033
7) 1 fb$^{-1}$, arXiv:1203.4493 [hep-ex]

- CDF2 also has $B(B_s^0 \rightarrow \mu^+\mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$
Analysis overview

• **Signal** \(B_s^0 \rightarrow \mu^+ \mu^- \)
 - two muons from one decay vertex
 - well reconstructed secondary vertex
 - momentum aligned with flight direction
 - mass around \(m_{B_s^0} \)

• **Background**
 - two semileptonic \((B)\) decays (gluon splitting)
 - one semileptonic \((B)\) decay and one misidentified hadron
 - rare single \(B\) decays
 - peaking, e.g. \(B_s^0 \rightarrow K^+ K^- \)
 - non-peaking, e.g. \(B_s^0 \rightarrow K^- \mu^+ \nu \)
Methodology

- **Measurement of** $B_s^0 \rightarrow \mu^+\mu^-$ **relative to normalization channel:**
 - similar trigger and selection to reduce systematic uncertainties

$$B(B_s^0 \rightarrow \mu^+\mu^-; 95\%C.L.) = \frac{N(n_{obs}, n_B, n_S; 95\%C.L.)}{\varepsilon_{B_s^0} N_{B_s^0}} = \frac{N(n_{obs}, n_B, n_S)}{\varepsilon_{B_s^0} \mathcal{L} \sigma(pp \rightarrow B_s^0)}$$

$$= \frac{N(n_{obs}, n_B, n_S)}{N(B^\pm \rightarrow J/\psi K^\mp)} \frac{A_{B^+}}{A_{B_s^0}} \frac{\varepsilon^{\text{ana}}_{B^+} \varepsilon_{B_s^0}^{\mu} \varepsilon^{\text{trig}}_{B_s^0}}{f_u} B(B^+ \rightarrow J/\psi [\mu^+\mu^-] K)$$

- **Calibration/validation of MC:**
 - $B^\pm \rightarrow J/\psi K^\mp$ normalization with high statistics
 - $B_s^0 \rightarrow J/\psi \phi$ B_s^0 signal MC (p_\perp, isolation, . . .)

- **Analysis in two channels**
 - **barrel** (both muons $|\eta| < 1.4$):
 - better signal/background ratio
 - good mass resolution (36 MeV)
 - **endcap** (at least one muon with $|\eta| > 1.4$):
 - add more statistics [$\sigma(m) \approx 70$ MeV]

⇒ **Blind analysis**

Urs Langenegger
Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/05/30)
The CMS detector

- Design prioritization
 - lepton ID \rightarrow muons
 - b/τ tagging \rightarrow tracking
 - jets and E_T

<table>
<thead>
<tr>
<th>Component</th>
<th>Characteristics</th>
<th>Resolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>3/2 Si layers</td>
<td>$\delta z \approx 20 , \mu m$, $\delta \phi \approx 10 , \mu m$</td>
</tr>
<tr>
<td>Tracker</td>
<td>10/12 Si strips</td>
<td>$\delta (p_\perp)/p_\perp \approx 1%$</td>
</tr>
<tr>
<td>ECAL</td>
<td>PbWO$_4$</td>
<td>$\delta E/E \approx 3%/\sqrt{E} \oplus 0.5%$</td>
</tr>
<tr>
<td>HCAL (B)</td>
<td>Brass/Sc, $> 7.2 \lambda$</td>
<td>$\delta E/E \approx 100\sqrt{E}%$</td>
</tr>
<tr>
<td>HCAL (F)</td>
<td>Fe/Quartz</td>
<td>$\delta (E_T) \approx 0.98\sqrt{\sum E_T}$</td>
</tr>
<tr>
<td>Magnet</td>
<td>3.8 T solenoid</td>
<td>$\delta (p_\perp)/p_\perp \approx 10%$ (STA)</td>
</tr>
<tr>
<td>Muons</td>
<td>DT/CSC + RPC</td>
<td></td>
</tr>
</tbody>
</table>

Weight 12'500 t
Length 21.6 m
Diameter 15 m
Magnetic field 3.8 T

Tracking resolution:
impact parameter $\approx 15 \, \mu m$
Muon reconstruction

- Large muon acceptance $|\eta| < 2.4$
 - drift tubes
 - cathode strip chambers
 - resistive plate chambers
- 3 muon reconstruction algorithms
 - standalone muon: in muon system (trigger ingredient)
 - global muon (‘GM’): outside-in standalone muon \rightarrow to inner track
 - tracker muon (‘TM’): inside-out inner track \rightarrow muon detector

Muon misidentification

$\varepsilon(\mu|\pi) \leq 0.1\%$

$\varepsilon(\mu|K) \leq 0.1\%$

$\varepsilon(\mu|p) \leq 0.05\%$

measured in data:

$D^* \rightarrow D^0 \pi^+_s \rightarrow K^- \pi^+ \pi^+_s$

$\Lambda \rightarrow p \pi^-$

CMS-PAS-MUO-10-002
Trigger

- Dimuon trigger
 - L1 (hardware) trigger
 - High-level trigger
 full tracking and vertexing
 - requirements tightened over time
- HLT $B^0_s \rightarrow \mu^+ \mu^-$
 - inv. mass $4.8 < m_{\mu^+ \mu^-} < 6.0$ GeV
 - dimuon vertex $\mathcal{P}(\chi^2, \text{dof}) > 0.5\%$
 - distance of closest approach $d_{ca} < 0.5$ cm
 - single muon $p_\perp > 4$ GeV, dimuon $p_\perp > 3.9(5.9)$ GeV in barrel (endcap)
- HLT $B^\pm \rightarrow J/\psi K^\pm$ and $B^0_s \rightarrow J/\psi \phi$
 - single muon $p_\perp > 4$ GeV, dimuon $p_\perp > 6.9$ GeV
 - distance of closest approach among muons $d_{ca} < 0.5$ cm
 - invariant dimuon mass $2.9 < m_{\mu^+ \mu^-} < 3.3$ GeV
 - pointing angle $\cos \alpha_{xy} > 0.9$ and dimuon vertex $\mathcal{P}(\chi^2/\text{dof}) > 15\%$
 - ‘displaced’ J/ψ: flight length significance $\ell/\sigma(\ell) > 3$
3D vertexing

- All silicon tracker
 - high granularity, low occupancy
 - very well described by MC simulation

- Pixel detector
 - $100 \times 150 \, \mu \text{m}^2$ pixel size
 - substantial charge sharing
 - excellent resolution

⇒ Essential in high-pileup environment!
Candidate selection
Two analyses

1. Search analysis $B \to \mu^+ \mu^-$ in two channels
 - **barrel** (both muons $|\eta| < 1.4$):
 - **endcap** (≥ 1 muon with $|\eta| > 1.4$):

2. Validation analysis in one channel

 $B^\pm \to J/\psi K^\pm$ and $B^0_s \to J/\psi \phi$ (and dimuons)

Overlays of data and MC simulation (selection summary on p. 20)
 - ‘all other’ selection criteria are applied

MC signal

data background in sidebands ($4.9 < m < 5.2$ GeV and $5.45 < m < 5.9$ GeV)
Signal selection: vertexing

• Choose one primary vertex
 ▶ longitudinal impact parameter (z position)
 ▶ refit without signal tracks

• Discriminating variables
 ▶ pointing angle α_{3D}
 ▶ B vertex fit quality χ^2/dof
 ▶ flight length significance $\ell_{3d}/\sigma(\ell_{3d})$
 ▶ 3D impact parameter δ_{3D} and significance $\delta_{3D}/\sigma(\delta_{3D})$

Urs Langenegger
Search for $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ in CMS (2012/05/30)
Isolation I

- **Primary vertex isolation**: Relative dimuon isolation
 - ‘classic’ variable
 - in cone around dimuon momentum
 - for tracks in cone with $\Delta R < 0.7$
 - with $p_\perp > 0.9$ GeV
 - either associated to same PV as candidate
 or with $d_{ca} < 500 \mu$m and not associated to another PV

 $$I = \frac{p_\perp (\mu^+\mu^-)}{p_\perp (\mu^+\mu^-) + \sum_{\Delta R < 0.7} p_\perp}$$

Parameters tuned to minimize data/MC discrepancy ($B^\pm \rightarrow J/\psi K^\pm$) and maximize dimuon bg rejection.

Urs Langenegger

Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/05/30)
Isolation II

- **B vertex isolation:**
 - based on tracks reconstructed in the proximity of the secondary B vertex
 - avoid pileup dependence:
 - either tracks associated to no primary vertex
 - or tracks associated to same vertex as B candidate
 - d_{ca}^0: distance of closest track to B vertex
 - N_{trk}^{close}: number of close tracks
 - $d_{ca} < 300 \, \mu$m
 - $p_{\perp} > 0.5 \, \text{GeV}$

- **Validation of B_s^0 MC:**
 - $B_s^0 \rightarrow J/\psi \phi$
 - (see below)
Normalization and control samples

- **Normalization sample**
 - $B^\pm \rightarrow J/\psi K^\pm$
 - validation of $B^+ \text{ MC}$

- **Control sample**
 - $B_s^0 \rightarrow J/\psi \phi$
 - validation of $B_s^0 \text{ signal MC}$

- **Combine J/ψ with 1 or 2 ‘kaons’**
 - $3.0 < m(\mu\mu) < 3.2 \text{ GeV}$
 - $p_\perp(\mu\mu) > 7 \text{ GeV}$
 - $p_\perp(K) > 0.5 \text{ GeV}$
 - additional selection for ϕ:
 - $0.995 < m(KK) < 1.045 \text{ GeV}$
 - $\Delta R(K, K) < 0.25$
 - all 3 (4) tracks used in vertexing

- **Comparison of (sideband-subtracted) data and MC simulation**
 - MC simulation normalized to data
Kinematics

- Bridges to CMS, 5 fb1 \(\sqrt{s} = 7 \text{ TeV} \)

\[B^+ \rightarrow J/\psi K^+ \]
- Data
- MC simulation

\[B^+ \rightarrow J/\psi K^+ \]
- Data
- MC simulation

- **Leading muon** \(p_\perp \)

- **Sub-leading muon** \(p_\perp \)

\[B \eta \]

\[B \ p_\perp \]

- **Barr Langenegger**

Search for \(B^0_s \rightarrow \mu^+ \mu^- \) and \(B^0 \rightarrow \mu^+ \mu^- \) in CMS (2012/05/30)
Isolation

Candidate distributions for $B^+ \to J/\psi K^+$ and $B^0 \to J/\psi K^+$ in CMS (2012/05/30)
Selection efficiency (uncertainty)

- Determine selection efficiency in data
 - MC simulation

 with respect to 'all other selection requirements', e.g. for $B^{\pm} \to J/\psi K^{\pm}$:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Selection</th>
<th>MC</th>
<th>Data</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>muon p_{\perp}</td>
<td>$p_{\perp} > 4.0$ GeV</td>
<td>0.927 ± 0.001</td>
<td>0.926 ± 0.001</td>
<td>-0.002 ± 0.001</td>
</tr>
<tr>
<td>pointing angle</td>
<td>$\alpha_{3D} < 0.050$ rad</td>
<td>0.994 ± 0.000</td>
<td>0.995 ± 0.000</td>
<td>+0.000 ± 0.000</td>
</tr>
<tr>
<td>vertex fit</td>
<td>$\chi^{2}/dof < 2.0$</td>
<td>0.936 ± 0.001</td>
<td>0.928 ± 0.001</td>
<td>-0.009 ± 0.001</td>
</tr>
<tr>
<td>impact parameter</td>
<td>$\delta_{3D} < 0.008$</td>
<td>0.972 ± 0.001</td>
<td>0.972 ± 0.001</td>
<td>+0.001 ± 0.001</td>
</tr>
<tr>
<td>impact param. sign.</td>
<td>$\delta_{3D}/\sigma(\delta_{3D}) < 2.000$</td>
<td>0.959 ± 0.001</td>
<td>0.944 ± 0.001</td>
<td>-0.015 ± 0.001</td>
</tr>
<tr>
<td>flight length sig.</td>
<td>$\ell_{3d}/\sigma(\ell_{3d}) > 15.0$</td>
<td>0.923 ± 0.001</td>
<td>0.926 ± 0.001</td>
<td>+0.004 ± 0.001</td>
</tr>
<tr>
<td>isolation</td>
<td>$I > 0.80$</td>
<td>0.893 ± 0.001</td>
<td>0.871 ± 0.001</td>
<td>-0.025 ± 0.002</td>
</tr>
<tr>
<td>close tracks</td>
<td>$N_{trk} < 2$</td>
<td>0.978 ± 0.000</td>
<td>0.975 ± 0.000</td>
<td>-0.003 ± 0.001</td>
</tr>
<tr>
<td>d_{ca}^{0}</td>
<td>$d_{ca}^{0} > 0.015$ cm</td>
<td>0.917 ± 0.001</td>
<td>0.929 ± 0.001</td>
<td>+0.013 ± 0.001</td>
</tr>
</tbody>
</table>

⇒ Systematic uncertainty from (quadr.) sum of relative differences

- $B^{\pm} \to J/\psi K^{\pm}$: 4%
 (largest single deviation: 2.5% from isolation)
- $B_{s}^{0} \to J/\psi \phi$: 3%
 (largest single deviation: 1.5% from B vertex χ^{2}/dof)
- idem for signal selection efficiency uncertainty
Pileup dependence?
Pileup independence

- Determine selection efficiency vs N_{PV} in data
 - 2011 dataset:
 - $\langle N_{\text{PV}} \rangle \approx 8$
 - $\text{RMS}(z) \approx 5.6\,\text{cm}$

$B^{\pm} \rightarrow J/\psi K^{\pm}$

$B_{s}^{0} \rightarrow J/\psi \phi$

- MC: also checked ε for
 - $N_{\text{PV}} < 6$
 - $N_{\text{PV}} > 10$

\Rightarrow no pileup dependence

Urs Langenegger

Search for $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ and $B^{0} \rightarrow \mu^{+}\mu^{-}$ in CMS (2012/05/30)
Search Analysis

Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ in CMS (2012/05/30)
Selection for search analysis

- Random grid optimization
 - 14 variables included in 1.4×10^6 runs
 - ‘rounding’ of best parameters for final selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Barrel</th>
<th>Endcap</th>
<th>units</th>
<th>comparison to old analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\perp \mu, 1}$</td>
<td>4.5</td>
<td>4.5</td>
<td>GeV</td>
<td>same</td>
</tr>
<tr>
<td>$p_{\perp \mu, 2}$</td>
<td>4.0</td>
<td>4.2</td>
<td>GeV</td>
<td>tighter in endcap</td>
</tr>
<tr>
<td>$p_{\perp B}$</td>
<td>6.5</td>
<td>8.5</td>
<td>GeV</td>
<td>tighter in endcap</td>
</tr>
<tr>
<td>ℓ_{3d}</td>
<td>1.5</td>
<td>1.5</td>
<td>cm</td>
<td>tighter</td>
</tr>
<tr>
<td>$\alpha <$</td>
<td>0.050</td>
<td>0.030</td>
<td>rad</td>
<td>looser</td>
</tr>
<tr>
<td>$\chi^2/dof <$</td>
<td>2.2</td>
<td>1.8</td>
<td></td>
<td>looser</td>
</tr>
<tr>
<td>$\ell_{3d}/\sigma(\ell_{3d}) >$</td>
<td>13.0</td>
<td>15.0</td>
<td></td>
<td>looser</td>
</tr>
<tr>
<td>$I >$</td>
<td>0.80</td>
<td>0.80</td>
<td>cm</td>
<td>redefined</td>
</tr>
<tr>
<td>$d_{ca}^0 >$</td>
<td>0.015</td>
<td>0.015</td>
<td>cm</td>
<td>redefined</td>
</tr>
<tr>
<td>$\delta_{3D} <$</td>
<td>0.008</td>
<td>0.008</td>
<td>cm</td>
<td>new</td>
</tr>
<tr>
<td>$\delta_{3D}/\sigma(\delta_{3D}) <$</td>
<td>2.000</td>
<td>2.000</td>
<td>cm</td>
<td>new</td>
</tr>
<tr>
<td>$N_{trk} <$</td>
<td>2</td>
<td>2</td>
<td>cm</td>
<td>new</td>
</tr>
</tbody>
</table>

- Total efficiency \times acceptance

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \rightarrow \mu^+ \mu^-$</td>
<td>0.0029 ± 0.0002</td>
<td>0.0016 ± 0.0002</td>
</tr>
<tr>
<td>$B^\pm \rightarrow J/\psi K^\pm$</td>
<td>0.00110 ± 0.00009</td>
<td>0.00032 ± 0.00004</td>
</tr>
</tbody>
</table>
Dimuon mass distribution (blinded)

- Low background (sidebands shown only)

Urs Langenegger

Search for $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ in CMS (2012/05/30)
Measurement of $B^\pm \rightarrow J/\psi K^\pm$

- Use identical selection as for dimuon, plus
 - $3.0 < m(\mu\mu) < 3.2 \text{ GeV}$
 - $p_\perp(\mu\mu) > 7 \text{ GeV}$, $p_\perp(K) > 0.5 \text{ GeV}$
 - all tracks used in vertexing

- Fit function
 - signal: double Gaussian
 - background: exponential + error function
 partially reconstructed B decays
 $B^0 \rightarrow J/\psi K^* \rightarrow \mu^+\mu^- K^- (\pi^+)$

<table>
<thead>
<tr>
<th></th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>0.162 ± 0.006</td>
<td>0.111 ± 0.006</td>
</tr>
<tr>
<td>ε_{tot}</td>
<td>0.00110 ± 0.00009</td>
<td>0.00032 ± 0.00004</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>82712 ± 4146</td>
<td>23809 ± 1203</td>
</tr>
</tbody>
</table>

- Systematic error on yield: 5%
 - variation of
 - background pdf
 - vary signal pdf
 - mass-constrain dimuons to J/ψ (better resolution)
Rare backgrounds

- Rare backgrounds
 - CKM-suppressed semileptonic decays
e.g. \(B_s^0 \rightarrow K^- \mu^+ \nu \), one fake muon
 large \(B \), but mostly at low masses
 - ‘peaking’ hadronic decays
 e.g. \(B_s^0 \rightarrow K^- K^+ \), two fake muons
 - Normalization to \(B^+ \) yield in data
 \[
 N(X) = \frac{\mathcal{B}(Y \rightarrow X)}{\mathcal{B}(B^+ \rightarrow J/\psi K^\pm)} \frac{f_Y}{f_u} \frac{\varepsilon_{\text{tot}}(X)}{\varepsilon_{\text{tot}}(B^+)} N_{\text{obs}}(B^+)
 \]
 weighting with misid rate \(f \) (or \(\varepsilon_\mu \)) and \(\varepsilon_{\text{trig}} \)

- Note
 - \(B^0 \) more affected than \(B_s^0 \)
 - endcap more diluted than barrel
 lower efficiency
- Systematic error varies
 - branching fraction uncertainties
 - \(f_s/f_u = 0.267 \pm 0.021 \) [LHCb, arxiv:1111.2357]
Systematic uncertainties

- **Acceptance:**
 - mixture of production processes
 - gluon fusion
 - flavor excitation
 - gluon splitting
 - half of acceptance variation
 - Studied variables sensitive to mixture
 - muon vs B candidate:
 - $\Delta R(B, \mu)$
 - $p_\perp(\mu)$

- **Selection efficiency**
 - from data/MC comparisons
 - quadratic sum for all selection criteria

- **Muon trigger and efficiency**
 - full variation, for thresholds $4 < p_\perp < 8$ GeV
 - efficiency difference between data and MC

Table: Systematic Uncertainties

<table>
<thead>
<tr>
<th>Category</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{tot} (signal)</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>ε_{tot} (normalization)</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>kaon tracking</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Table: Additional Systematic Uncertainties

<table>
<thead>
<tr>
<th>Category</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ trigger</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>μ ID</td>
<td>4%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Summary of systematic errors

- Systematic uncertainties propagated into upper limit calculation
 all errors below in %

<table>
<thead>
<tr>
<th>Category</th>
<th>Uncertainty</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_s/f_u</td>
<td>production ratio of u and s quarks</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>acceptance</td>
<td>production processes</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>P_{ij}^B</td>
<td>mass scale and resolution</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>efficiency (signal)</td>
<td>discrepancies data/MC simulation</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>efficiency (normalization)</td>
<td>discrepancies data/MC simulation</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>efficiency (normalization)</td>
<td>kaon track efficiency</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>efficiency</td>
<td>trigger</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>efficiency</td>
<td>muon identification</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>normalization</td>
<td>fit pdf</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>background</td>
<td>shape of combinatorial background</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>background</td>
<td>rare decays</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Cross checks

- Determination of \(\mathcal{B}(B_s^0 \to J/\psi \phi)/\mathcal{B}(B^\pm \to J/\psi K^\pm) \)
 - barrel vs. endcap
 - \(B^+ \) fitting
 - consistent definitions
 - acceptance
 - efficiency
 - (different number of daughters)
 - \(f_s/f_u \) from LHCb

- Inverted isolation sample \((I < 0.7, \text{not blinded})\)
 - comparison of prediction vs. observation
 - validation of rare backgrounds
 - background interpolation

- Stability vs. time (HLT changes)
 - yields (dimuons, normalization and control sample)
 - yield ratios
Results
Upper limit calculation

Methodology

- CL$_S$
- Feldman-Cousins
- statistical model:

\[
\begin{align*}
N^B_s &\sim\text{Pois}(\tau^B_s \nu^B_b + \nu^B_{s,\text{rare}} + P^B_{ss} \mu^B_s \nu^B_s + P^B_{sd} \mu^B_d \nu^B_d) \\
N^B_d &\sim\text{Pois}(\tau^B_d \nu^B_b + \nu^B_{d,\text{rare}} + P^B_{ds} \mu^B_s \nu^B_s + P^B_{dd} \mu^B_d \nu^B_d)
\end{align*}
\]

with \((i = s, d)\)

- \(\tau^B_i\): Ratio of \((B^0_i \to \mu\mu)\)-signal window size to size of background window
- \(\nu^B_{i,\text{rare}}\): Expected number of rare background in \((B^0_i \to \mu\mu)\)-signal window.
- \(\nu^B_i\): Expected number of reconstructed \((B^0_i \to \mu\mu)\) decays in barrel region assuming the SM
- \(P^B_{ij}\): Probability for a reconstructed \(B^0_j \to \mu\mu\) decay to be in \((B^0_i \to \mu\mu)\)-signal window.
- \(\mu_i\): Signal strength of \(B^0_i \to \mu\mu\), that is the ratio of true branching ratio to SM branching ratio.

Systematic error on cross feed \(P^B_{i,j}\)

- mass scale and resolution
- measure \(J/\psi \to \mu^+\mu^-\), \(B^0_s \to \mu^+\mu^-\), \(\Upsilon(1S) \to \mu^+\mu^-\)
- compare MC resolution (and position) with prediction (interpolation)
Expectations and observation

<table>
<thead>
<tr>
<th>Variable</th>
<th>$B^0 \rightarrow \mu^+\mu^-$ Barrel</th>
<th>$B_s^0 \rightarrow \mu^+\mu^-$ Barrel</th>
<th>$B^0 \rightarrow \mu^+\mu^-$ Endcap</th>
<th>$B_s^0 \rightarrow \mu^+\mu^-$ Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>0.24 \pm 0.02</td>
<td>2.70 \pm 0.41</td>
<td>0.10 \pm 0.01</td>
<td>1.23 \pm 0.18</td>
</tr>
<tr>
<td>Combinatorial bg</td>
<td>0.40 \pm 0.34</td>
<td>0.59 \pm 0.50</td>
<td>0.76 \pm 0.35</td>
<td>1.14 \pm 0.53</td>
</tr>
<tr>
<td>Peaking bg</td>
<td>0.33 \pm 0.07</td>
<td>0.18 \pm 0.06</td>
<td>0.15 \pm 0.03</td>
<td>0.08 \pm 0.02</td>
</tr>
<tr>
<td>Sum</td>
<td>0.97 \pm 0.35</td>
<td>3.47 \pm 0.65</td>
<td>1.01 \pm 0.35</td>
<td>2.45 \pm 0.56</td>
</tr>
<tr>
<td>Observed</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Signal regions

$B^0 : 5.20 < m < 5.30 \text{ GeV}$

$B_s^0 : 5.30 < m < 5.45 \text{ GeV}$
Results: upper limits

- Upper limit on $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-)$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$

<table>
<thead>
<tr>
<th>upper limit (95%CL)</th>
<th>observed</th>
<th>(median) expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-)$</td>
<td>7.7×10^{-9}</td>
<td>8.4×10^{-9}</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$</td>
<td>1.8×10^{-9}</td>
<td>1.6×10^{-9}</td>
</tr>
</tbody>
</table>

- p-values (for background-only hypotheses)

<table>
<thead>
<tr>
<th>p-values</th>
<th>background only</th>
<th>SM cross feed</th>
<th>floating cross feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-)$</td>
<td>0.06 (1.5σ)</td>
<td>0.07 (1.5σ)</td>
<td>0.11 (1.2σ)</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)$</td>
<td>0.11 (1.2σ)</td>
<td>0.29 (0.6σ)</td>
<td>0.24 (0.7σ)</td>
</tr>
</tbody>
</table>
Interpretation examples

- Empty region due to previous upper limit and other published data

\Rightarrow strongest impact at large $\tan \beta$
Conclusions

• Search for $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ in 2011 dataset

<table>
<thead>
<tr>
<th>upper limit (95%CL)</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$</td>
<td>7.7×10^{-9}</td>
<td>8.4×10^{-9}</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)$</td>
<td>1.8×10^{-9}</td>
<td>1.6×10^{-9}</td>
</tr>
</tbody>
</table>

• Significant improvement
 ▶ at EPS 2011: $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) < 1.9 \times 10^{-8}$ (at 95%CL)
 ▶ more/changed variables, e.g., better B vertex isolation
 ▶ improved sensitivity
 ▶ higher signal/background ratio
 ▶ publ. in JHEP 04(2012), 033

• Well prepared for 2012 data
 ▶ higher instantaneous lumi (trigger thresholds are looser)
 ▶ high pileup (tracking and vertexing)
Backup
A ‘new’ analysis

- Analysis was performed **blind**
 - reblinded old data \(1.1 \text{ fb}^{-1}\)
 - total amount of data: \(4.9 \text{ fb}^{-1}\)

- Significant analysis modifications
 - tighter muon identification \((3 \times \text{ smaller fake rate})\)
 - isolation variables
 - primary vertex isolation (redefined)
 - \(B\) vertex isolation: distance of closest track (redefined)
 - \(B\) vertex isolation: track counting (new)
 - non-monotonous changes
 - 3D impact parameter and its significance (new)

⇒ Better analysis
 - pileup independence up to \(N_{PV} \approx 30\)
 - higher sensitivity
 - larger signal/background

Analysis is (still) cut-n-count
Unblinding post-mortem

- Comparing signal events of this analysis to the EPS-2011 analysis
 - no overlap between signal events
 - 2 barrel B^0 candidates: killed by (changed) d_{ca}^0
 - 1 endcap B^0 candidate: killed by (tightened) ℓ_{3D} selection
 - 1 endcap B_s^0 candidate: killed by (new) 3D impact parameter (and its significance)
 - one signal event is from EPS-2011 dataset
 - χ^2/dof requirement is now looser
 - one common event in the sideband
 - kinematical variables are identical
 - isolation variables changed (to be expected)

- Summary of signal box migrations
 - Barrel
 - B^0: 0 become 2
 - B_s^0: 2 disappear, 2 appear
 - Endcap
 - B^0: 1 disappears, 0 appear
 - B_s^0: 1 disappears, 4 appear