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Background to Workshop

• Organised by CERN OpenLab and held in IT Auditorium, 7-8 July 

2011

• ~30 registered participants 

• Mainly from heavy-ion interaction experiments

• Follow up to a first Workshop in June 2010 held in GSI

• Aim: 

– How exploit new processors (CPUs, co-processors)  in order to reduce cost 

and complexity as well as speeding up triggers and analysis software?

• Two tracks

– First day: Algorithms 

• Reconstruction methods (track finding/fitting), ...

– Second day: Parallel Hardware and software

• Tools for parallelization/Vectorization, new Intel MIC architecture, ...



First Workshop and Context

• Targeted experiments
– GSI CBM (Compressed Baryonic Matter)

– BNL STAR (Relativistic Heavy Ion Experiment)

– PANDA (Darmstadt)  and ALICE (CERN)

• Consolidated effort involving: 
– GSI: Algorithms 

– Uni Frankfurt: Vector Classes

– HEPHY (Vienna): Kalman Filter,  track and vertex fit

– Intel: Intel Ct (C/C++ for throughput computing)

– CERN OpenLab: Many core optimization, benchmarking

• Topics
– Vertexing, Track fit, Track finding

– Parallelization on CPUs and GPUs



Next slides will summarize each talk

• Thursday: Algorithms
– 1)  Summary of progress since 1st workshop

– 2) GPUs for triggering in the NA62 experiment

– 3) Algorithms challenges in LHC data analysis

– 4) Random number generation for MC simulations using GPUs– 4) Random number generation for MC simulations using GPUs

– 5) New approaches in Track finding/fitting

– 6) KFParticle and a Vertexing toolkit

– 7) Experience using GPU for ATLAS Z-finder

• Friday morning: Hardware/Software
– 8) ArBB: Software for scalable programming

– 9) OpenCL: programming at the right or wrong level

– 10) Intel MIC accelerator

– 11) NUMA experience on large many-core servers

– 12) How to improve (in the HEP community)



1) Progress Since First Workshop

• Vertexing
– 3 D model under development

• KFParticle package extended with some routine
– KFPartcicle functionality:

• Reconstruction of decayed particle parameters based on Cellular Automaton (CA) • Reconstruction of decayed particle parameters based on Cellular Automaton (CA) 
track finder, Kalman Filter (KF) track fitter (More details in talks 5 and 6)

• Derived from  cbmroot framework 

• Track fit
– Improved stability and speed of track fitting

– Single precision Runge-Kutta track propagation implemented

• Track finding
– Efficiency and speed improves on CBM and STAR experiments

• Track propagation in magnetic field
– 40 X speed up on GPUs demonstrated



2) TDAQ in NA62 Experiment

L0: Input rate is ~10 ~10 

NA62 : to probe  decay of charged Kaons, using 400 GeV/c protons

L0: Input rate is ~10 ~10 

MHzMHz.  latency ~~1ms.1ms.

(~2 microseconds for (~2 microseconds for 

ATLAS)ATLAS)

L1L1: Input rate  ~1 ~1 

MHzMHz. latency is few few 

seconds. (few ms for seconds. (few ms for 

ATLAS)ATLAS)



GPUs in NA62 Triggers (1/2)

The use of the GPU at the software levels (L1/2) software levels (L1/2) is 
straightforward: just put the video card in the PC!

No particular changes to the hardware are needed

The main advantages is to reduce the number reduce the number of PCs in the L1/L2 L1/L2 

farmsfarmsfarmsfarms

•• Various parallel Various parallel algorithms algorithms 
for ring searches  were for ring searches  were 
described described 

•• Various GPU cards Various GPU cards testedtested
•• See graphSee graph

•• RRing ing finding finding in the RICHRICH of 
NA62NA62

–– ~1.5 us ~1.5 us per event @L1 @L1 using 

a new algorithm (double ringdouble ring)



GPUs in  NA62 Triggers (2/2)

• The use of GPUGPU at L0L0 is more challenging:

– Need  very fast algorithm (high rate)

– Need event buffering in order to hide the latency hide the latency of the GPUGPU
and to optimize the data transfer data transfer on the Video cardand to optimize the data transfer data transfer on the Video card

– Limited by size of L0 buffer

• Ring finding in the RICHRICH of NA62NA62

•• ~~50 50 ns ns per ring @L0 @L0 using a parallel algebraic fit (single ringsingle ring)

•As  a further application, investigating the benefit of GPUsGPUs for Online Online 
track fitting track fitting at L1L1, using cellular automaton cellular automaton for parallelization



3) Algorithm Challenges in the LHC 
Data Analysis

• High level general discussion on HEP data analysis

• Parallelization of RooFit using OpenMP required no 

drastic changes to existing code 

– RooFit: Library for modeling expected distribution of events– RooFit: Library for modeling expected distribution of events

– OpenMP:  API for shared memory multi-process/multi-core 
thread programming

– This Work is targeting  multicore laptops and Desktop
• ~2.5 X speed up without vectorization

• Using Intel Compiler  for vectorization (~5 X speed up)

– Currently using double precision, but would like to use single 
precision

• Can gain up to 2 speed up from vectorization

• But numerical accuracy might be an issue



4) Pseudo Random Number Generation for 
MC Simulation Using GPUs

• Mersenne Twister method used in standard ROOT 
– Very good statistical properties with a period 219937

– not suitable for GPUs

• Has a large state that must be updated serially

• Hybrid Approach more suitable: Tausworthe and LCG (Linear • Hybrid Approach more suitable: Tausworthe and LCG (Linear 
Congruential Algorithm)

• Test example: multivariate alias sampling
– Device: NVIDIA GeForce GTX 480

– Kernel 1000 x times faster that CPU

– Overall execution time only 10X (device-host data transfers)



5) New approaches in Track 
finding/fitting

• Challenges in CBM

– 107 Au-Au col/sec

– 1000 particles/col

• At L1

– Track reconstruction

– Vertex search

• Cellular Automaton CA as 
track finder

– Ideal for many core CPUs 

and GPUs

– Using Opladev35 node: 
– 4 CPUs AMD E6164HE, 12 

cores/cpu
Larger groups of events per thread use the CPU more efficiently



Kalman Filter Based Track Fit

• Discussed a number of approaches and track 

propagation method

• Similar many core scalability to CA

– For 1000 tracks/thread, achieved 22 ns/track/node on – For 1000 tracks/thread, achieved 22 ns/track/node on 
opladev35

• The use of Intel ArBB for reconstruction algorithms in 

the STAR experiment is under investigation

– ArBB: Array Building Blocks Library (Talk 8)

• 4D reconstruction (x, y, z,t ) for the CBM experiment 

has started



6) KFParticle and a Vertexing Toolkit

• KFParticle developed based on ALICE and CBM 

experiments

• Rewritten using SIMD model (Vectorization)

– Vector arguments to some functions + for loops– Vector arguments to some functions + for loops

• 5X speedup for CBM on multicore CPUs

• Online particle finder for CBM

– Based on SIMD KFParticle and SIMD KF track fitter

– Comparison with off-line model: practically the same results

• Future plans also discussed

– Use KFParticle for 4D tracking development



7) Experience Using GPUs for 
ATLAS Z Finder Algorithm

• Introduction to GPUs, CUDA and  GPU projects at 

Edinburgh

• Implementation of Z finder algorithm on GPUs

• Kalman Filter for CUDA in ATLAS• Kalman Filter for CUDA in ATLAS
• Edinburgh feasibility studies

• 3 Slides on Dmitry’s work

• Test case studies of particle tracking in a magnetic field, 

on GPUs
– Preliminary results show speedup of 10 compared to CPU

• Particle tracking and simulation, in addition to trigger are 

areas where GPUs can used to improve performance



8) ArBB:  Software for Scalable 
Programming

• ArBB: Array Building Blocks

– C++ library for data parallel programming on many core 
CPUs, SIMD units and Intel MIC

• Containers and parallel operations• Containers and parallel operations
– Vectors and Matrices (regular , irregular, sparse)

– ArBB programs cannot create thread deadlocks or data 
races

• Intel Compiler  vectorization switches discussed

• ArBB is part  of Intel Parallel Building Block:

– Intel Cilk Plus

– Intel  Threading Building Block

– Intel ArBB



Intel Parallel Building Blocks



9) OpenCl: Programming at the 
Right or the Wrong Level

• Experience with a RooFit implementation
– OpenCL is superset of C (no C++), cannot call host code from OpenCl

– Neither Intel or AMD OpenCl implementations offer auto-vectorization on 

CPUs (as of 1/7/11)

• Planned• Planned

– Using C++ for CPU and OpenCl for GPU

– OpenCl leads to larger serial fraction as compared to OpenMP

• Needs explicit call to Kernel , lower parallel efficiency

• OpenCl can be painful for use in legacy C++ code
– Main advantage is code reuse between CPU and GPU

– Need to use double precision. Peak performance? Dream on!

• Think before using OpenCl for CPU
– Intel compiler (or GCC) could be a better way to go

• Now investigating hybrid solution with OpenMP and OpenCl



10) Intel MIC Architecture

• MIC: Many Integrated Cores
– X86 compatible multiprocessors that are programmed using existing (CPU) tools 

– Eliminates the need for dual programming models

– Has all advantage of other accelerators for parallel workload

– Each core is smaller, has lower power limit and executes its own instructions – Each core is smaller, has lower power limit and executes its own instructions 

allowing complex code including branches, recursions, …

• Prototype (Night’s Ferry) available through 2011:
– Up to 32 cores, 1.2GHz each

– Up to 128 threads (4 threads/core)

– Up 8 MB shared coherent cache

– Up to 2GB high bandwidth GDDR5 memory

– Only support single precision for now

• Commercial (Night’s Corner) late 2012-2013

– More than 50 cores per chip expected



11) NUMA Experience on Large 
Many-core Servers from AMD/Intel

• NUMA: Non Uniform Memory Access

– Multiple nodes can access each other’s memory but accessing local 
memory is faster

• Memory latency measurements• Memory latency measurements

• Memory bandwidth measurements

• OpenMP on NUMA systems

– Using STREAM bandwidth benchmark code

– Compared the use of affinity switches  (ICC compilers)

• Compact: assign thread n+1 as near as possible to thread n

• Scatter: distribute the threads as evenly as possible through system
– Scatter can help performance

• Useful to extract topology of the system for selection switch



12) How to Improve HEP Computing 
– expectations from people

• Control Numerical Accuracy through compiler, code, …
– 10-6 accuracy is fine, 10-18 may be impossible

– In the exa-scale era, you may not get the same result from two different  

runs using the same input on the same hardware, depending on the order in 

which floating point operations are interleavedwhich floating point operations are interleaved

• Exploitation of vector capabilities
– Every computer is a now a vector computer

– SIMD sizes (up to 16X for the MIC architecture, 512bits width)
• Too much performance to ignore

• Which compiler to use
– Look at parallelization/vectorization and  accuracy control flags

• Use of parallelism with good control of memory
– Rather incomprehensible that we use 1-10GB of memory to compute an 

event that is 1 MB in size

• Need to move all the good prototypes back into mainstream



Final Thoughts

• Short afternoon discussion:

– Many topics tabled,  but limited debate

– Action on making KFParticle package available to users 

• Renewed activity in HEP analysis parallelization work• Renewed activity in HEP analysis parallelization work

– Vectorization seems to have a new lease of life at this workshop
• Speed up can be achieved with minimal code changes

• Standard programming models and compilers

• Intel MIC architecture will be another boost for vectorization

and shared memory programming (OpenMP)

• GPUs have the edge in multi-level triggers (CA, KF)

– But which GPU and which programming model for performance as 

well as avoiding vendor lock-in ?

• For more details see full slides: 
http://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=130322


