Jet substructure as a (Higgs) search tool

Jonathan Butterworth
University College London
RAL, 27/10/2010
Subjets

- ATLAS and the LHC
- Jets
- Why now?
- Jet substructure and QCD
- Subjets and the Higgs
- Other applications (time permitting)
Muon Spectrometer (\(|\eta|<2.7\)) : air-core toroids with gas-based muon chambers
Muon trigger and measurement with momentum resolution < 10% up to \(E_\mu \sim 1\) TeV

Length : \(~46\) m
Radius : \(~12\) m
Weight : \(~7000\) tons
\(~10^8\) electronic channels
3000 km of cables

EM calorimeter: Pb-LAr Accordion
e/\gamma trigger, identification and measurement
E-resolution: \(\sigma/E \sim 10\%/\sqrt{E}\)

HAD calorimetry (\(|\eta|<5\)) : segmentation, hermeticity
Fe/scintillator Tiles (central), Cu/W-LAr (fwd)
Trigger and measurement of jets and missing \(E_T\)
E-resolution: \(\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03\)

3-level trigger reducing the rate from 40 MHz to
\(~200\) Hz

Inner Detector (\(|\eta|<2.5, B=2T\)):
Si Pixels, Si strips, Transition Radiation detector (straws)
Precise tracking and vertexing,
e/\pi separation
Momentum resolution:
\(\sigma/p_T \sim 3.8\times10^{-4} p_T\) (GeV) \(\oplus 0.015\)
LHC & ATLAS Operation

~90% data taking efficiency

(~95% excluding beam vacuum issues)
ATLAS Operation

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Number of Channels</th>
<th>Approximate Operational Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>80 M</td>
<td>97.3%</td>
</tr>
<tr>
<td>SCT Silicon Strips</td>
<td>6.3 M</td>
<td>99.2%</td>
</tr>
<tr>
<td>TRT Transition Radiation Tracker</td>
<td>350 k</td>
<td>97.1%</td>
</tr>
<tr>
<td>LAr EM Calorimeter</td>
<td>170 k</td>
<td>98.1%</td>
</tr>
<tr>
<td>Tile calorimeter</td>
<td>9800</td>
<td>96.9%</td>
</tr>
<tr>
<td>Hadronic endcap LAr calorimeter</td>
<td>5600</td>
<td>99.9%</td>
</tr>
<tr>
<td>Forward LAr calorimeter</td>
<td>3500</td>
<td>100%</td>
</tr>
<tr>
<td>LVL1 Calo trigger</td>
<td>7160</td>
<td>99.9%</td>
</tr>
<tr>
<td>LVL1 Muon RPC trigger</td>
<td>370 k</td>
<td>99.5%</td>
</tr>
<tr>
<td>LVL1 Muon TGC trigger</td>
<td>320 k</td>
<td>100%</td>
</tr>
<tr>
<td>MDT Muon Drift Tubes</td>
<td>350 k</td>
<td>99.7%</td>
</tr>
<tr>
<td>CSC Cathode Strip Chambers</td>
<td>31 k</td>
<td>98.5%</td>
</tr>
<tr>
<td>RPC Barrel Muon Chambers</td>
<td>370 k</td>
<td>97.0%</td>
</tr>
<tr>
<td>TGC Endcap Muon Chambers</td>
<td>320 k</td>
<td>98.6%</td>
</tr>
</tbody>
</table>
What is a Jet?

• Protons are made up of quarks and gluons.
• Quarks and gluons are coloured and confined – we only ever see hadrons.
• A jet of hadrons is the signature of a quark or gluon in the final state.
• The gross properties (energy, momentum) reflect the properties of the quark or gluon, and stand out above the rest of the event.
• Jet algorithm.
What is a Jet?

• Evolution from a hard parton to a jet of partons takes place in a regime where:
 – Energy scale is high enough to use perturbation theory
 – X (momentum fraction of particles) is not very small
 – Collinear logarithms are large
 – Multiplicities can be large
 – This is largely understood QCD, and can be calculated

• Hadronisation (non-perturbative) stage has a small effect (sub-GeV level) and is well modelled by tuned Monte Carlo simulation (e.g. Lund string)
Jet Algorithms

• “Cluster” algorithms
 – Generally start from the smallest objects available, and perform an iterative pair-wise clustering to build larger objects (using either geometric or kinematic properties of the objects)
 – Sort of inverts the QCD parton shower idea
• Lend themselves most naturally to substructure studies.
Cluster algorithms

- Each has a distance measure, and merges the “closest” objects by this measure until some criteria is reached (could be a specified multiplicity, or “distance”)
- Modern ones (k_T, Cambridge, anti-k_T) belong to a general class where the distance parameter is given as

\[d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}, \]

\[d_{iB} = k_{ti}^{2p}, \]

\[\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]

- p=1 for k_T, 0 for Cam/Aachen, -1 for anti-k_T
k_T algorithm

 \[\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]

 \[d_{ij} = \min(k_{t_i}^{2p}, k_{t_j}^{2p}) \frac{\Delta_{ij}^2}{R^2}, \]

 \[d_{IB} = k_{t_i}^{2p}, \]

- Successively merge objects with low relative k_T

- If the k_T^2 of an object w.r.t the beam is lower than k_T^2 w.r.t anything else in the event divided by R^2, don’t merge any more; call it a jet.

- Mimics (inverts) the QCD parton shower.

- Soft stuff merged into the nearest hard stuff.

- Can undo merging. Last merge is the hardest.
Cambridge/Aachen algorithm

- Dokshitzer, Leder, Morretti, Webber (JHEP 08 (1997) 01; Wobisch and Wengler hep-ph/9907280
 - p=0
 \[\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]

- Successively merge objects with low relative Δ.
- Objects with $\Delta^2 > R^2$ not merged
- Can undo merging. Last merge is the furthest away (so is often the softest).
Anti-\(k_T\) algorithm

- \textit{Cacciari, Salam, Soyez JHEP 0804:063, 2008}
 \[p = -1 \]
 \[\Delta^2_{ij} = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]
 \[d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta^2_{ij}}{R^2}, \]
 \[d_{iB} = k_{ti}^{2p}, \]

- Successively merge objects with high relative \(k_T\)
- \(d_{ij}\) is determined solely by the \(k_T\) of the harder of \(i\) & \(j\), and by \(\Delta\). Soft stuff within \(R^2\) of a high \(k_T\) object will be merged with it. If two hard jets are close the energy will be shared based on \(\Delta\).
- Shape of jet is unaffected by soft radiation.
- Can undo merging but the order is not very meaningful since the hardest object sucks in everything around it regardless of the relative hardness of the splitting.
Why (are subjects suddenly more interesting) now?
Scales in the experiment

1. Proton mass ~ becomes possible to accurately calculate using perturbative QCD
 around 1 - 5 GeV.

2. W, Z mass / electroweak symmetry-breaking scale / Higgs mass if it exists
 around 50-250 GeV

3. Phase space
 A few TeV
Scales in the experiment

• For the lifetime of the experiment, there will be interesting physics objects around the electroweak scale.

• Production of multiple EW-scale particles (W,Z,H,t...) and jets either directly or in cascade decays
 – Means we need the new calculations, especially Monte Carlos which match many-leg matrix elements to partons showers/resumations.

• Copious production of EW-scale particles well above threshold
 – Means highly collimated decay products, and therefore interesting sub-jet structure for hadronic decays.
 – The LHC will be the first place we have ever seen this.
Subjets and QCD
Jet shape

- A way of measuring the energy distribution within a jet
 - Can be defined for any algorithm
 - Generally well modelled by leading-log parton showers
 - Understood well enough to be used to measure α_s
Jet shape

Jet shape

CDF II Preliminary

\[\psi(r/R) \]

- DATA
- PYTHIA Tune A

- gluon-jet
- quark-jet

\[37 < p_T^{\text{jet}} < 45 \text{ GeV/c} \]
\[0.1 < |\eta^{\text{jet}}| < 0.7 \]

27 Oct 2010
RAL, J.Butterworth
Jet shape

CDF II Preliminary

Example: proton-antiproton

Subjets

- Photoproduction
 Also well described by LL parton shower simulation.

Hard QCD: Jet Shapes

ATLAS
\[\int \mathcal{L} \, dt = 17 \text{ nb}^{-1}, \sqrt{s} = 7 \text{ TeV} \]
anti-\(k_t \) jets, \(R = 0.6 \)
\(p_T > 60 \text{ GeV}, \mid y \mid < 2.8 \)
Inclusive jets, Clusters

\[\int \mathcal{L} \, dt = 17 \text{ nb}^{-1}, \sqrt{s} = 7 \text{ TeV} \]
anti-\(k_t \) jets, \(R = 0.6 \)
\(p_T > 30 \text{ GeV}, \mid y \mid < 2.8 \)
2nd leading jet, Clusters

arXiv:1009.5908 [hep-ex]
Submitted to EPJC

27 Oct 2010
RAL, J.Butterworth
Hard QCD: Jet Cross Sections

ATLAS

\[\int L \, dt = 17 \, \text{nb}^{-1} \quad (\sqrt{s} = 7 \, \text{TeV}) \]

\[
\begin{array}{c}
\text{l}_{y} < 2.8 \\
\text{Systematic Uncertainties} \\
NLO pQCD (CTEQ 6.6) \times \text{Non-pert. corr.} \\
\text{anti-k}, R=0.4
\end{array}
\]

\[
\begin{array}{c}
\text{Data/Theory} \\
0 \quad 0.5 \quad 1 \quad 1.5 \quad 2
\end{array}
\]

\[
\begin{array}{c}
p_{T} \quad [\text{GeV}] \\
100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600
\end{array}
\]

\[
\begin{array}{c}
\text{arXiv:1009.5908} \quad [\text{hep-ex}] \\
\text{Submitted to EPJC}
\end{array}
\]

27 Oct 2010
RAL, J.Butterworth
Jet Substructure

• Two goals of the recently developed techniques
 – Improve the single jet mass resolution
 – Background suppression
• Distinguish between QCD-generated high mass jets and those due to heavy object decays
Improved single jet mass resolution

• First unclustering stages in C/A, throw away softer or more distant partner
 – JMB, Davison, Rubin, Salam, PRL 100, 242001 (2008).
 – JMB, Ellis, Raklev, Salam, PRL 103, 241803 (2009).

• “Filtering”: Rerun algorithm with tighter distance resolutions
 – JMB, Davison, Rubin, Salam

• Variable R parameter

• “Pruning” or “Trimming”: Remove soft splittings in (re)clustering
Background Suppression

Distinguish between QCD-generated high mass jets and those due to heavy object decays

– None-strongly order k_T scale
 • *JMB, Cox, Forshaw, PRD 65; 096014 (2002).*

– Symmetric splitting
 • *Kaplan et al, JMB et al*

– Anomalously large mass drop
 • *JMB et al*

– Analytic jet shapes (planar flow etc)
 • *Almieda et al PRD 79:074017,(2009).*
Low Mass Higgs

• Around 115 GeV no single channel is (was) above 3σ with $10\text{fb}^{-1}@14\text{TeV}$
• Need a combination of channels
• WH, ZH with $H \rightarrow bb$
 – Principal search channel at Tevatron
 – Not competitive at LHC...

ATLAS
$L = 10 \text{fb}^{-1}$
Higgs + (W or Z)
Higgs + (W or Z)

- Example: ATLAS Physics TDR (1999)
 - Poor acceptance
 - Cuts introduce artificial mass scale into the background
 - Top anti-top has a similar mass scale
 - Large combinatorial background
- Signal swamped by backgrounds
 - “very difficult ... even under the most optimistic assumptions”
High p_T Higgs and Vector Boson

- By requiring that the Higgs and Vector Boson have a high transverse momentum, we lose a factor of ~ 20 in cross section
 - However, much of this would have failed other analysis cuts anyway
 - Background cross sections fall by a bigger factor (typically t-channel not s-channel)
- W/Z and H are all central
 - Better b-tagging, better jet resolution
- W/Z and H decay products collimated
 - Simpler topology, fewer combinatorials
 - Difficult for tops to fake this
- $Z \rightarrow$ neutrinos becomes visible
 - High missing E_T
Sub-jet analysis

• Cambridge/Aachen algorithm
 – Dokshitzer et al ‘97, Wengler and Wobisch ‘98

• Like “k_T without the k_T”
 – Work out $\Delta R_{ij} = \sqrt{(\Delta \phi^2 + \Delta y^2)}$ between all pairs of objects
 – Recombine the closest pair
 – Repeat until all objects are separated by $\Delta R_{ij} > R$

• We tried several values for R;
 – Main value chosen: $R = 1.2$
 – best value depends on p_T cut
 – Sensitivity not strongly dependent on the p_T / R combination

• Having clustered an event this way, can then work through backwards to analyse a particular jet.
Sub-jet analysis

1. Start with Higgs candidate jet (highest p_T jet in acceptance) with mass m

2. Undo last stage of clustering (reduce radius to R_{12})
 $J \rightarrow J_1, J_2$

3. If $\max(m_1, m_2) < 2m/3$
 Call this a “mass drop”. This fixes the optimal radius for reconstructing the Higgs decay. Keep the jet J and call it the Higgs candidate.
 Else, go back to 2

4. Require $Y_{12} > 0.09$
 Dimensionless rejection of asymmetric QCD splitting
 Else reject the event

5. Require J_1, J_2 to each contain a b-tag
 Else reject the event

27 Oct 2010
RAL, J.Butterworth
Sub-jet analysis

6. Define $R_{\text{filt}} = \min(0.3, R_{bb}/2)$
 Make use event-by-event of the known Higgs decay radius
 Angular ordering means this is the characteristic radius of QCD radiation from Higgs products
 Stuff outside of this is likely to be underlying event and pileup.

7. Recluster, with Cambridge/Aachen, $R = R_{\text{filt}}$

8. Take the 3 hardest subjets and combine to be the Higgs b, anti-b and leading order final state gluon radiation

9. Plot the mass
Improved subjet analysis

all jets, default $R = 1.2$
Improved subjet analysis

Hardest jet, $pt=246.211$ $m=150.465$

$200 < p_{tZ} < 250$ GeV

m_H [GeV]

0.002 0.004 0.006 0.008

80 100 120 140 160

0.002 0.004 0.006 0.008
Improved subjet analysis

Drop step 1; Delta R = 1.03129; pt1=243.291 m1=139.158; pt2=3.944 m2=5.24475
Improved subjet analysis

Drop step 2: Delta R = 0.87699; pt1=146.636 m1=52.3423; pt2=102.622 m2=27.7967

200 < p_{tZ} < 250 GeV

m_{H} [GeV]

200 < p_{tZ} < 250 GeV

m_{H} [GeV]
Improved subjet analysis

p_t [GeV] with $R_{filt} = 0.3$

200 < p_{tZ} < 250 GeV

m_H [GeV]
Improved subjet analysis

Final filtered result, \(p_t = 227.257 \) m=117.211
Analysis Overview

• Consider three cases
 – HZ, Z \rightarrow ee, $\mu\mu$
 – HZ, Z \rightarrow $\nu\nu$
 – HW, W\rightarrow e/μ + ν

• Three non-overlapping selections
 – $l +$ missing $E_T +$ jet ("Leptonic W case")
 – $l^+ l^- +$ jet ("Leptonic Z case")
 – Missing $E_T +$ jet ("Z \rightarrow neutrinos case")

• Common cuts
 – p_T Higgs candidate $>$ 200 GeV, p_T VB candidate $>$ 200 GeV
 – $|\eta| < 2.5$ (Higgs candidate and leptons)
 – $p_T > 30$ GeV, $|\eta| < 2.5$ (leptons)
 – No extra b jet ($p_T > 30$ GeV, $|\eta| < 2.5$) or lepton passing these cuts.
Individual Channels

(a) \(S/N = 2.1 \) in 112-128 GeV

(b) \(S/N = 3.1 \) in 112-128 GeV

(c) \(S/N = 2.9 \) in 112-128 GeV

(d) \(S/N = 4.5 \) in 112-128 GeV
Combined particle-level result

- Note excellent Z peak for calibration
- 5.9 σ; potentially very competitive
- $b\bar{b}$ branching information critical for extracting Higgs properties
- Studies within ATLAS are promising and nearly public.
Combined result

- Note excellent Z peak for calibration
- 5.9σ; potentially very competitive
- Also, unique information on relative coupling of H to Z and W.
- Reasonably good up to about 130 GeV.
Combined result

- Strong dependence of b-tag performance
- Significance about 4.5σ for 60% efficiency/factor 50 rejection
- Also strong dependence on jet mass resolution (not shown)
Fully simulated detector

- Included trigger, real ATLAS b-tagging algorithm, detailed tracking & calorimeter
- Also include Wt background omitted from initial study.
- Also included study of Wbb ME vs Wg->Wbb
- Slight degradation w.r.t particle level, but still very promising
High p_T top and tt resonances

- Kaplan, Rehermann, Schwartz, Tweedie
- Use C/A technique, optimise b-tagging, use helicity information from top decay

FIG. 1: A typical top jet with a p_T of 800 GeV at the LHC. The three subjets after top-tagging are shaded separately.
High p_T top and tt resonances

- Ysplitter technique used by ATLAS (ATLA-PHYS-PUB-2009-081)
- Improved C/A technique used by CMS
- Both feasible, and some kind of subjet analysis is required to obtain best sensitivity.
Higgs and top together

- Combine techniques for top and Higgs tagging to improve sensitivity to Higgs in ttH channel
- Also use Higgs techniques in new physics events

FIG. 3: Reconstructed bottom-pair mass m_{bb}^{rec} for signal ($m_H = 120$ GeV) and backgrounds without (upper) and including (lower) underlying event. The distributions shown include three b tags.
“No lose” channel for electroweak symmetry breaking.

Most interesting at high WW mass

Want to measure WW mass, so at least one W must decay hadronically, or we have too many neutrinos.

Therefore the most interesting events have a highly-boosted, hadronically-decaying W or Z
K_T y scale ("ysplitter")

• If the jet developed from a QCD cascade (initiated by a hard quark or gluon), dominant emissions are “strongly ordered”
 – First q -> qg splitting is at a scale much lower than the starting scale
 – Characterised by a dimensionless parameter y, such that
 \[E_T^2 \ll E_T'^2 \text{, i.e. } y \ll 1 \]

• If the jet developed from a massive particle decay, the first splitting is not necessarily strongly ordered.
 – Actually related to mass of particle, nothing to do with QCD
 \[y E_T^2 \sim M_X^2 \text{, i.e. } y \sim M_X^2/E_T^2 \]

• To get y, treat the contents of the jet ~like a single e^+e^- event

 \[\text{(JMB, B.Cox, J.Forshaw, Phys.Rev.D65:096014,2002.)} \]
WW final state

- **Search for resonances or deviations in the cross section at high masses**
 - Leptonically decaying $W +$ hadronically decaying W

- **Major backgrounds**
 - $W +$ jets: QCD jet fakes a W
 - $t\bar{t}$: Real W's from tops.

- **Internal structure of the W candidate helps with rejection of W+jet background.**
WW final state

- Four-vector level simulation
- W+jet
- WW scattering
- ttbar

WW final state

Particle Level result

SUSY decay chains

- e.g. SUSY Benchmarks from DeRoeck et al,
 - Massive squark means boosted W.
 - Also get Z, Higgs, top in various decay chains.

Bosons in SUSY final states

- Dashed lines = W jets
- Solid lines = quark, gluon jets
- SUSY events
- Pythia W+jet
- Alpgen/Herwig W+jets
SUSY final states

SM background from ttbar, W +jets, Z+jets, WW/ZZ/WZ, QCD.

SUSY background from misidentified decays, especially QCD jets faking hadronic W, Z or h decays.

Signal

scenario α

SUSY final states

SM background from ttbar, W +jets, Z+jets, WW/ZZ/WZ, QCD.

SUSY background from misidentified decays, especially QCD jets faking hadronic W, Z or h decays.

Signal

scenario \(\beta \)

SUSY final states

SM background from ttbar, W +jets, Z+jets, WW/ZZ/WZ, QCD.

SUSY background from misidentified decays, especially QCD jets faking hadronic W, Z or h decays.

Signal

scenario γ
SUSY final states

SM background from ttbar, W +jets, Z+jets, WW/ZZ/WZ, QCD.

SUSY background from misidentified decays, especially QCD jets faking hadronic W, Z or h decays.

Signal

scenario δ

Baryon-number violating decays

- In R-parity violating SUSY, extra allowed terms in the lagrangian which lead to neutralino decay to 3 quarks.

\[W = \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda'^{ijk} L_i Q_j \bar{d}_k + \mu''^i L_i H_u + \frac{1}{2} \lambda'''^{ijk} \bar{u}_i \bar{d}_j \bar{d}_k \]

500 GeV squark,
100 GeV neutralino

Baryon-number violating decays

KT method

C/A method

See also ATLAS detector-level study in ATL-PHYS-PUB-2009-081
Baryon-number violating decays

Significance after 1 fb⁻¹ at 14 TeV

Reconstructing the squark mass.
Summary

- Jet finding, jet mass, sub-jet technology, and the associated understanding of QCD, have come a long way since (and because of) the previous round of colliders.

- Subjet analysis has dramatic benefits in H->bb search channels; looks very promising and practical, even after full detector simulation. (7 TeV needs more investigation)

- At the LHC we have interesting physics at \(\mathcal{O}(100 \text{ GeV}) \), and phase space open at \(\mathcal{O}(1 \text{ TeV}) \). This means that a single jet often contains interesting physics. We probably haven’t yet appreciated all the consequences of this qualitatively new feature of physics beyond the EWSB scale.
Leptonic Z case

- Common cuts, plus require
 - dilepton mass between 80 and 100 GeV
Z → neutrinos case

(b) $\sqrt{S}N\sqrt{B} = 4.0$

in 112-128 GeV

- Common cuts, plus require
 - Missing E_T greater than 200 GeV

Common cuts, plus require

- Missing E_T greater than 200 GeV
Leptonic W case

- Common cuts, plus require
 - missing $E_T > 30$ GeV
 - Lepton and missing E_T consistent with a W
 - No extra jets $|\eta| < 3$, $p_T > 30$ GeV
Combined result

- Note excellent Z peak for calibration
- 5.9 σ; potentially very competitive
- Also, unique information on relative coupling of H to Z and W.
- Reasonably good up to about 130 GeV.
• Strong dependence of b-tag performance
• Significance about 4.5σ for 60% efficiency/factor 50 rejection
• Also strong dependence on jet mass resolution (not shown)
Todo:

- Reduce LSP
- Include ttH
Infrared Safety?

• Adding an arbitrarily soft gluon to the event should not change the jets.

• Non-infrared-safe jet algorithms cannot be used in higher order calculations.
 • so if we use them in the experiment we cannot compare to the best theory (at least without making some intermediate model-dependent correction).

• Actually, infrared instabilities undermine the claim of a jet algorithm to be telling us about the short distance physics.
 • We should also worry about sensitivity to arbitrarily low noise, or arbitrarily soft pions, for example.

• An example of an infrared instability is the “seed” in old cone algorithm. But there are others (e.g. in the splitting/merging)
Precision Application

- ZEUS Jet measurements
- 1% energy scale, k_T algorithm
- Compared to NLO QCD, used in NLO PDF fits

What is a Jet?

- Jets are not just less-well-measured leptons or “smeared” partons.
 - Hard radiation interference at amplitude level
 - Matching at high scales with Matrix element
 - Matching at low scales with parton densities and hadronisation model
 - Potentially useful information in the internal jet structure, and in particle/energy flow between the jets

- Jets have no existence independent of the algorithm
 - Even if the “algorithm” = event display + physicist
What is a Jet?

• So jet algorithms don’t so much **find** a pre-existing jet as **define** one.

• A “jet” (or a pattern of jets) is a complex QCD event shape, designed to reflect as closely as possible the short distance degrees of freedom (quarks, gluons, H, Z, W...)

 – The degrees of freedom themselves are generally not physical observables, but can only be extracted within some theory or model

 – The cross section for quark production in the final state at LHC is **zero** (unless we find something very exciting...)
Jet Energy Scale

- **Current strategy**
 - Electromagnetic scale from test beam measurements (electrons & muons)
 - Correction for
 - Difference in hadronic/electromagnetic response
 - Losses in material in front of Calorimeter
 - Leakage from back of the calorimeter
 - Magnetic field
 - Cluster and jet algorithmic inefficiency
 are all dealt with by simulation
Jet Energy Scale Uncertainty

- Dominant systematic in ~all measurements involving jets or missing energy.
- Uncertainties from
 - Translating test beam EM scale to in situ (3-4%)
 - Material knowledge/simulation ~2%
 - Noise <3%
 - Beamspot position <1%
 - “closure test” <2%
 - Hadronic (GEANT) shower model ~4%
 - Hadronic (generator) show model <4%
 - Pile up: variable. (<1% for cross section measurement)
 - Intercalibration in y (from in situ dijet balance) <3%
 - For dijet measurements, decorrelated error ~3%
Jet Energy Scale Uncertainty

- < 9% everywhere. ~6% for high p_T
- ~40% error on jet cross section
- Checked with extensive single-particle studies in collision data and soon by photon-jet balance

CERN-PH-EP-2010-034
To be submitted to EPJC
Inclusive Jet cross sections

\[\int L \, dt = 17 \, nb^{-1}, \sqrt{s} = 7 \, TeV \]

- Systematic Uncertainties
- NLO pQCD (CTEQ 6.6) × Non-pert. corr.

Data / Theory

\[|y| < 0.3 \]
\[0.3 < |y| < 0.8 \]
\[0.8 < |y| < 1.2 \]
\[1.2 < |y| < 2.1 \]
\[2.1 < |y| < 2.8 \]

\[d^2 \sigma / dp_T \, dy \, [pb/GeV] \]

\[0 \, pb/GeV \]
\[1 \, pb/GeV \]
\[10 \, pb/GeV \]
\[10^2 \, pb/GeV \]
\[10^3 \, pb/GeV \]
\[10^4 \, pb/GeV \]
\[10^5 \, pb/GeV \]
\[10^6 \, pb/GeV \]
\[10^7 \, pb/GeV \]
\[10^8 \, pb/GeV \]
\[10^9 \, pb/GeV \]

ATLAS

\[\Delta R_{jets}, R=0.4 \]

\[60 \, GeV < p_T < 80 \, GeV \]
\[110 \, GeV < p_T < 160 \, GeV \]
\[210 \, GeV < p_T < 260 \, GeV \]
\[310 \, GeV < p_T < 400 \, GeV \]

arXiv:1009.5908 [hep-ex]

Submitted to EPJC
Dijet cross sections

\[\frac{d^2\sigma}{dm_1 dm_2} |_{\max} \]

ATLAS
- anti-\(k_t\) jets, \(R = 0.6\)
- \(\sqrt{s} = 7\ \text{TeV}, \int L \text{ dt} = 17\ \text{nb}^{-1}\)

- \(2.1 < \max|y| < 2.8\) \((\times 10^6)\)
- \(1.2 < \max|y| < 2.1\) \((\times 10^6)\)
- \(0.8 < \max|y| < 1.2\) \((\times 10^6)\)
- \(0.3 < \max|y| < 0.8\) \((\times 10^6)\)
- \(|y| < 0.3\) \((\times 10^6)\)

- NLO pQCD (CTEQ 6.6)
- Systematic uncertainties
- Non-pert. corr.

\[\chi = \frac{1+\cos \theta^*}{1-\cos \theta^*} \]

arXiv:1009.5908 [hep-ex]

Submitted to EPJC
Jet cross sections vs MC

ATLAS

arXiv:1009.5908 [hep-ex]
Submitted to EPJC