ATLAS
SCT End-cap

Stephen Haywood Rutherford Appleton Lab
This Talk

- ATLAS
- Inner Detector
- SCT
- End-cap
 - Silicon Modules
 - Disks
 - Support Structures & Thermal Enclosures
 - Assembling the End-caps
 - Integration at CERN
 - Status
- Tracking in the Inner Detector
- Status
- Conclusions

Focus is Engineering for the SCT End-cap – JINST 3 P05002 (2008)
ATLAS

Goals

- Understand the “mass mechanism”: Higgs, Technicolour ...
- Investigate physics beyond the Standard Model: SUSY, Extra Dimensions (Black Holes), Additional Symmetries, etc.
- Investigate the Standard Model at 14 TeV: QCD, etc.
- Improve measurements of the Standard Model parameters: M_W, m_{top}, B-sector, etc.

Measurements at LHC:

- $\sqrt{s} = 14$ TeV
- Design Lumi = 10^{34} cm$^{-2}$s$^{-1}$
\[\eta = -\log(\tan\theta/2) \]

\[\eta = 2.5 \leftrightarrow \theta = 9^\circ \]

Radius = 1150 mm Length = 2700 mm

B = 2T Solenoid – non-uniform at ends

Stephen Haywood

ATLAS SCT End-cap 5
TRT

Straw Tracker – continuous tracking

Transition Radiation detected by Xe – distinguish electrons and pions

Barrel:
- Effectively 36 layers of straws
- Embedded in “mats” of polypropylene fibres

End-cap:
- Stacks of 16 15 µm polypropylene foils, each separated by 200 µm

Total num straws = 400,000
50 μm × 400 μm Pixels
- Bump-bonded chips
- 1744 Modules
- 82M channels

Barrel:
- 3 barrels at R = 5, 9, 12 cm

End-cap:
- 2 × 3 disks
SemiConductor Tracker (SCT)

Barrel:
- 4 cylinders
- 2112 Modules

End-cap:
- 2 × 9 disks
- 1976 Modules

Typical Module:
- 2 × 6 cm × 6 cm axial strips
- 2 × 6 cm × 6 cm stereo strips (40 mrad)
- Strips ~80 μm wide
- 6M channels
SCT End-cap
Requirements

- Provide 4 space-points within $|\eta| < 2.5$
- Modules placed on Disks to 70 (Inner) or 220 (Outer) μm
- Disks placed in Cylinder to 100 (x-y) and 1000 (z) μm
- Aligned to O(1) μm; stable to O(1) μm/hour
- Modules kept at -7°C – each End-cap generates 10 kW heat
- End-cap to be kept dry; dew-point O(-30°C
- Withstand hadron fluences of 2×10^{14} cm$^{-2}$ 1 MeV neutron equiv
- Minimise magnetic materials (Fe,Ni)
- Minimise potential activation (Ag)
- Minimise electrical noise pick-up from ext sources and emission
- Comply with fire-safety requirements
- Reduce mass (radiation & interaction lengths)
- Tolerate Solenoid quench
- 6 × 128 channels on each side
- Thermal pyrolytic graphite (TPG) spine provides rigidity & cooling path
- Cooling at hybrid and “second point” (opposite end)
- Build precision: $O(10)$ µm; 5 µm in most important params; measured to $O(2)$ µm
- Expected measurement precision: 17 µm × 580 µm – confirmed in Test Beam
- Modules are “key-stone” – phi-strips are radial
- 3 different radii: Outer, Middle, Inner (shorter)
- Disk 8 has “Short Middles”
- Total of 4 different types

- Stereo alternates orientation (same in Barrel): uφ, φv, uφ, φv, ...
- Achieved by rotating Modules by ±20 mrad
Disks

- Support Modules
- Support Module Services

Stephen Haywood
180 µm CFRP facesheets: 3 plies at 0, ±60°
8.3 mm Korex® honeycombe core
Korex: aramid fibres with phenolic resin; low moisture absorption

1st natural frequency: 22 Hz
Out of plane distortions expected to be less than 40 µm
Services on Front of Disk

- Outer Module
- Inner Module
- OptoHarness
- Tape aperture
Services on Rear of Disk

FSI Jewel

Tape PPF0

Opto PPF0

Cooling Circuit

Middle Module
On-Disk Cooling Circuits

- Modules generate up to 10 W → 10 kW per End-cap
- Must be kept at −7°C to reduce radiation damage to silicon
- Stable temperature essential to reduce thermal motion

- Use evaporative cooling (latent heat): C₃F₈

- Tried Al pipes – corrosion problems
- Use CuNi (70:30) 3.7 mm OD, 70 µm wall-thickness
 Good corrosion properties; easy to solder
- “Wiggly” design for stress relief
- Difficult to bend with bend radius of 4×diameter
- Watch holes in wall (from inclusions) → careful QA
- Modules bolted to Pin on Cooling Blocks
- Cooling Blocks made of Carbon-Carbon: 100 W/m/K in good direction
- PEEK insulation between detector and hybrid portion of Block
- Gold-plated to avoid grease absorption
Power Tapes

Supply
- LV digital & analogue power for detector
- HV for detector
- Power for Opto-electronics
- Control lines

- LV power (higher current): copper-clad aluminium twisted pair
- Rest: Cu traces on Polyimide tape (Aluminium too fragile)

- Due to complex design (modularity) 21 flavours of tape required
OptoHarnesses

Optical fibres for
- **Data** from Modules
- **Timing/Trigger/Control** info to Modules

250 µm fibres clad in 0.9 mm OD furcation tubing

Contained in 12-way ribbons for upto 6 Modules
Frequency Scanning Interferometry provides real-time alignment info (Interfere light from measured length with light from reference length; scanning frequency allows absolute determination of length)

Precision $O(1)$ μm in length

Installed only in SCT

Measures movement … due to thermal & humidity effects, gravitational sag, etc

Delicate emitter/receiver fibres in holders & reflectors on Disks
Took 2 years to assemble 9 UK Disks

Stephen Haywood

ATLAS SCT End-cap 23
Module Mounting

- By hand, with tooling (Barrel used robot)
- Thermal grease applied in controlled amount to Cooling Blocks
- Modules held to Block by washer & nut

Date

% Done

10 months

Stephen Haywood

ATLAS SCT End-cap 24
Testing

Extensive testing of
- Disks with Services
- Modules
- Modules on Disks

Metrology:
- Require Cooling Block Pins' position to 37, 60, 190 µm for Inner, Middle, Outer Modules (for sufficient overlap)
- Measure with CMM to 10 µm
- Global rotations, but Pin-Pin position in spec for all but one Pin
- 8000 “problematic” strips – 0.26% of total, cf spec of 1%
- Mean of 4 out 1536 strips per module
- 80% of these are “dead”; 20% noisy or unbonded
Finished Disks

Stephen Haywood

ATLAS SCT End-cap 27
CFRP composites similar design to Disks: Faceskins & Korex honeycomb
Cost 2/3 M$ and consumed several years
Support Cylinder

- 9 mm thick
- **Inserts** accurate to 250 µm to position Disks
Front & Rear Supports

Front: 9 mm thick

Rear: 25 mm thick
Front & Rear Supports rest on TRT rails
Supported kinematically by “Mechanisms”
FEA & Tests

37,000 element model

Effect of gravity & CTE

- CTE $1.4 \times 10^{-6} \, ^\circ\text{C} \ldots 30 \, ^\circ\text{C} \text{ over } 2 \, \text{m} \rightarrow 80 \, \mu\text{m} \quad \text{CME} = 1.0 \times 10^{-4}$
- 1st mode 6 Hz; 2nd mode 24 Hz
- Taking a conservative vibration spectrum, expect deviations of 3 (40) μm perpendicular (parallel) to axis
- Test sample panels to > 2.5 MPa
- Load structure to $\times 1.5$ working load; measure deflections of 0.74 and 0.87 mm, cf predictions of 0.63 mm

Stephen Haywood

ATLAS SCT End-cap 32
Thermal Enclosures

- Contain SCT environmental gas (N_2) … external gas is CO_2
- Moisture barrier
- Thermal barrier … TRT is at 22.5 °C
- Prevent formation of condensation/ice on outside of SCT
- Faraday shield
Outer Thermal Enclosure

- **Sandwich**: aluminised polyimide / 8 mm foam / Cu-polyimide
- Use **Araldite 2011**
- Much **prototyping**
Inner Thermal Enclosure

- CFRP laminate cylinder / 5 mm foam / Cu-polyimide
- Includes gas channels with 0.3 mm holes for gas purge

Stephen Haywood

ATLAS SCT End-cap 36
Membranes

- Gas seals
- Complete Faraday shield

- Connect all Cu-Kapton foils with solder
Heater Pads

- Critical component: To ensure keep outside above dew-point and in case moist air gets into Inner Detector, cover outside with heater pads
- 8 µm thick Cu tracks sandwiched between polyimide
- 150 W/m² or 300 W/m²
- Double tracks for redundancy
- Integral thermocouples
- Switch power (rise/fall time O(1) ms)
Above ignores Module heating / cooling ~ $O(10)$ kW per End-cap
Net inward flux ~ 200 W – so small perturbation for Module cooling
Assembling the End-caps

Took place in
- Liverpool
- Nikhef

Stephen Haywood
ATLAS SCT End-cap 40
Disk Insertion

Disk “grabbed” at inner radius
- Located with **microscopes** longitudinally to 200 \(\mu \text{m} \)
- Located with **telescopes** transversely to \(~100 \mu \text{m}\)
- **Cylinder pre-loaded** to compensate for subsequent additions of Disks & Services
- Each Disk held by **12 pins** around circumference
Services

- Power Tapes
- Purge gas return pipes
- Module Cooling delivery capillaries
- OTE support rail
- Module Cooling return pipe
- Disk Fixings

+ Optical Fibres

Stephen Haywood

ATLAS SCT End-cap 43
Significant heat load
Expect temp rise of 50°C at worst
Wrap in 150 μm Al foil, including dedicated (spare) cooling pipes
Compress with Cu-Be spring
Transportation from Liverpool

- Temperature & humidity controlled, air-sprung lorry
- Serious test run with dummy load
- Carefully monitored
- Insured for 9 MSF

Largest internal acceleration \(~1.2\) g
Integration at CERN

- Lots of checks and re-laying of Services at CERN
- Add Rear Support and mount on cantilever beam
Add Thermal Enclosures
- TRT on rails and slid over the SCT on cantilever beam
- Add Front Support
- Align on TRT Rails
- Seal Thermal Enclosure & dry out
- Electrical tests
Insert into ATLAS

- Use **Contact Sensor** to work out when in place (up to Barrel)
- Both End-caps make contact 5 mm before nominal – one End-cap 3 mm **too long**
Services & Patch Panels (PPF1)

- **Service lengths** carefully calculated to avoid deficit/excess
- **Cable trays** added
- **Patch panels** at end of Ecal Cryostat

Stephen Haywood
ATLAS SCT End-cap 50
Cooling System

- C_3F_8 liquid enters SCT at room temp
- Leaves as vapour/liquid at around $-20 \, ^\circ\text{C}$
- Heat Exchanger to heat/cooling entering/leaving C_3F_8
- Heat Exchangers occupy space foreseen for cancelled TRT C-wheels
- Must boil off excess fluid, else will cause condensation on un-insulated pipes
- Heaters have been cause of many problems
Grounding & Shielding

- Can be a make-or-break factor
- Careful consideration:
 - Module, Disk, End-cap, Services, Cable Trays, ID, ATLAS
- Solid connections ($< 0.2 \, \Omega$) & insulation ($> 1 \, \text{M}\Omega$)
- Avoid apertures $> 1 \, \text{cm} \times 10 \, \text{cm}$ where possible
- Use Alochrome 1200 & Fingerstock
- Make measurements before/after insertion into TRT & ATLAS
Mass

- **Target** for error is 1% – more critical at lower radii (tracking volume)
- Very careful bottom-up estimates of component masses
- **Disk** (without Modules) correct to 1.4%
- Mass supported by Front & Rear Supports is 178 kg, cf initial design estimate of 168 kg
- Difference between two **End-caps** (some +’s and –‘s) is < 1 kg
- Attempt to **weigh** SCT (inside TRT) was inconclusive

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td>24</td>
</tr>
<tr>
<td>Disks</td>
<td>33</td>
</tr>
<tr>
<td>Support Cylinder, Services & OTE</td>
<td>57</td>
</tr>
<tr>
<td>Other Support Structures</td>
<td>23</td>
</tr>
<tr>
<td>Rest of Services</td>
<td>88</td>
</tr>
<tr>
<td>PPF1 Patch Panels</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>259</td>
</tr>
</tbody>
</table>
Radiation Lengths

Disk

Cylinder & Services

Other Services etc

Total (except PPF1)

Stephen Haywood

ATLAS SCT End-cap 54
RAL Contributions

Barrel:
- 600 Modules
- On-Cylinder Cooling Circuits
- Services → Cylinders
- Thermal Enclosure design & manufacture
- Mass

End-cap:
- On-Disk Cooling Circuits
- Services → 9 Disks
- Support Structures design & procurement
- Thermal Enclosure design
- UK Transportation & Insurance
- Off-Disk Cooling Circuits, Services routing & Patch Panels
- Mass
Tracking Performance
Track Parameter Resolutions

Momentum resolution

\[p_T \times \sigma(1/p_T) \]

Impact parameter resolution

\[\sigma(d_0) \]

Barrel:

\[\sigma(1/p_T) = 0.34 \times (1\oplus44 \text{ GeV}/p_T) \text{ TeV}^{-1} \]

\[\sigma(d_0) = 10 \times (1\oplus14 \text{ GeV}/p_T) \mu\text{m} \]

Stephen Haywood

ATLAS SCT End-cap 57
Reconstruction Efficiency

Tracks in b-jet from ttbar events, as function of distance from core of jet

Tracks in Min Bias events
Vertex Reconstruction

Z vertex resolution
40 \mu m (ttbar), 70 \mu m (Higgs)

Radial resolution for K_s decays

B-tagging in ttbar events
Electrons & Conversion Photons

J/ψ mass resolution in Barrel (left) & End-cap (right)

Pion rejection in TRT

Conversion identification

Stephen Haywood

ATLAS SCT End-cap 60
Status
ATLAS was ready for Collisions on Sunday, but ... 😞
I am not aware of any serious problems with any of subdetectors

Inner Detector

TRT
- Some dead HV cards

Pixels
- 11 (4) dead (problematic) modules
- 36 modules unusable on Disks due to problems with 3 cooling loops
- Currently, can operate 95% of Pixels – hope to recover even more

SCT
- Leak rates of N$_2$ exceed spec, but are tolerable: dry-out achieved, so operate with lower overpressure (Barrel SCT has large leak rate)
- One Module Cooling Circuit on Disk 9 has large leak of C$_3$F$_8$ and is inoperable – loss of 13 Modules ... not terrible
- One Module Cooling Circuit on Disk 1 has Heater problem and is currently inoperable – loss of 23 Modules ... not great
SCT Summary

<table>
<thead>
<tr>
<th></th>
<th>Barrel</th>
<th>End-cap A</th>
<th>End-cap C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Num Modules</td>
<td>2112</td>
<td>988</td>
<td>988</td>
</tr>
<tr>
<td>Modules not functional</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dead Strips (%)</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Modules not cooled (2008)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Chips lost</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Functional channels (%)</td>
<td>99.6</td>
<td>99.7</td>
<td>96.0</td>
</tr>
</tbody>
</table>
Inner Detector Commissioning

Huge amount of testing, more recently with:

- **Cosmics** – very useful for Alignment
- **Beam “splash”** – very useful for timing:
 “Unique opportunity to time whole the detector at once in one event! This saves may be months of work.”
- **Beam-gas** – nice for Software Reconstruction, but not many events
Cosmics

SCT & Pix Barrels

SCT End-cap

Stephen Haywood ATLAS SCT End-cap 65
Single Beam

Beam-gas in SCT

Interaction in Beam-pipe

Beam-gas in TRT

Stephen Haywood

ATLAS SCT End-cap 66
Conclusions

Two ATLAS SCT End-caps have been constructed, meeting almost all of the specs.

The project has taken ~15 years, with ~6 years required for Construction and Assembly.

~200 people have worked on the End-caps.

The insured value of the hardware was 9 MCHF for each End-cap.

Apart from one two Cooling Circuit problems, the End-caps are close to fully functional.

The ATLAS Inner Detector is ready to receive LHC collisions and the Software is in place to reconstruct the First Data.
Acknowledgments

- Work of many **institutes**: Modules, Services
- **Engineering** especially: Liverpool, Nikhef, RAL, CERN
- Underlying **Paper** benefitted from input from:

 Pepe Bernabeu Maaike Limper
 Pawel Bruckman Caroline Magrath
 Craig Buttar Chris Nelson
 Sandra Ciocio Brian Smith
 Paul Dervan Luis Sospedra
 Didier Ferrere Jason Tarrant
 Peter Ford Tony Weidberg
 Martin Gibson Pippa Wells
 Jennifer Haywood Patrick Werneke
 Nigel Hessey Ian Wilmut
 Tim Jones
RAL Contributors

PPD
Jeff Bizzell
Stephen Haywood
Richard Holt
Bruce Gallop
Martin Gibson
Peter Phillips
Mike Tyndel

ED - PED
Paul Barclay
Steve Butterworth
Peter Ford
Debbie Greenfield
Tony Jones
Chris Nelson
John Noviss
Brian Smith
Jason Tarrant
Ian Wilmut

ID
Craig McWaters
John Matheson

ED - Workshop
Alan Austin (DL)
Geoff Burton
Eamonn Capocci
Colin Croxford
Colin Dabinett
Mike Harris
Cyril Lockett
Graham Rolfe
John Spencer (SSTD)
Dave Wilshire

Stephen Haywood