Introduction to Silicon Detectors
Marc Weber, Rutherford Appleton Laboratory

• Where are silicon detectors used?
• How do they work?
• Why silicon?
• Electronics for silicon detectors
• Silicon detectors for the ATLAS experiment
• Radiation-hardness
• Future

RAL Graduate Lectures, November 2006
Where are silicon detectors used?

in your digital Cameras to detect visible light
in particle physics experiments to detect charged particles

Example: ATLAS Semiconductor Tracker (SCT); 4000 modules; 6 M channels
in astrophysics satellites to detect X-rays

Example: EPIC p-n CCD of XMM Newton

New picture of a supernova observed in 185 AD by Chinese astronomers
in astrophysics satellites to detect gamma rays

GLAST
The Gamma-ray Large Area Space Telescope

11,500 sensors
350 trays
18 towers
~10^6 channels
83 m² Si surface

INFN, Pisa
Silicon detectors are used at many other places

• in astrophysics satellites and telescopes to detect visible and infrared light
• in synchrotrons to detect X-ray and synchrotron radiation
• in nuclear physics to measure the energy of gamma rays
• in medical imaging

What makes silicon detectors so popular and powerful?
Operation principle ionization chamber

1. Incident particle deposits energy in detector medium \Leftrightarrow positive and negative charge pairs

2. Charges move in electrical field \Leftrightarrow electrical current in external circuit

Most semiconductor detectors are ionization chambers

How to chose the detection medium?
Desirable properties of ionization chambers

Always desirable: signal should be big; signal collection should be fast

for particle energy measurements: particle should be fully absorbed ⇔
 high density; high atomic number Z; thick detector
 Example: Liquid Argon

for particle position measurements: particle should not be scattered ⇔
 low density; low atomic number; thin detector
 Example: Gas-filled detector; semiconductor detector

Typical ionization energies for gases ⇔ 30 eV
 for semiconductor ⇔ 1-5 eV

Get (much) more charge per deposited energy in semiconductors
Semiconductor properties depend on band gap

Small band gap $\Leftrightarrow \approx$ **conductor**

Very large charge per energy, but

electric field causes large DC current $>>$ signal current

Charged particle signal is “Drop of water in the ocean”

Large band gap $\Leftrightarrow \approx$ **insulator** (e.g. Diamond)

little charge per energy

small DC current; high electric fields

Medium band gap $\Leftrightarrow \approx$ **semiconductor** (e.g. Si, Ge, GaAs)

large charge per energy

What about DC current?
Semiconductor basics

When isolated atoms are brought together to form a crystal lattice, their wave functions overlap.

The discrete atomic energy states shift and form energy bands.

Properties of semiconductors depend on band gap.
Semiconductor basics

Intrinsic semiconductors are semiconductors with no (few) impurities

At 0K, all electrons are in the valence band; no current can flow if an electric field is applied

At room temperature, electrons are excited to the conduction band

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Ge</th>
<th>GaAs</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_g [eV]$</td>
<td>1.12</td>
<td>0.67</td>
<td>1.35</td>
<td>5.5</td>
</tr>
<tr>
<td>$n_i (300K) [cm^{-3}]$</td>
<td>1.45×10^{10}</td>
<td>2.4×10^{13}</td>
<td>1.8×10^{6}</td>
<td>$< 10^3$</td>
</tr>
</tbody>
</table>

There are too many free electrons build detectors from intrinsic semiconductors other than diamond
How to detect a drop of water in the ocean? ⇔ remove ocean by blocking the DC current

Most semiconductor detectors are diode structures

The diodes are reversely biased only a very small leakage current will flow across it
Operation sequence

Charged particle crosses detector and creates electron hole pairs

these drift to nearest electrodes ⇔ position determination
Components of a silicon detector

Silicon sensor with the reversely biased pn junctions

Readout chips

Multi-chip-carrier (MCM) or hybrid

Support frame (frequently carbon fibre)

Cables

Cooling system

+ power supplies and data acquisition system (PC)

Let’s look at a few examples now before moving on with the talk
Detector readout electronics

Typically the readout electronics sits very close to the sensor or on the sensor.

Basic functions of the electronics:

- **Amplify charge signal** ⇔

typical gains are 15 mV/fC

- **Digitize the signal**
 ⇔ in some detectors analog signals are used

- **Store the signal** ⇔
 sometimes the analog signal is stored

- **Send the signal to the data acquisition system**

The chips are highly specialized custom integrated circuits (ASICs)
Critical parameters for electronics

- **Noise performance**
 output noise is expressed as equivalent noise charge [ENC]
 ENC ranges from 1 e- to 1000 e-;
 for strip detectors need S/N ratios > 10

- **Power consumption**
 typical power of strip detectors is 2-4 mW/channel; for pixels at LHC 40-100 µW/pixel; elsewhere can achieve << 1 µW/pixel

- **Speed** ⇔ requirements range from 10 ns to ms

- **Chip size** ⇔ smaller and thinner is usually best
- **Radiation hardness** ⇔ needed in space, particle physics and elsewhere

These requirements are partially conflicting; compromise will depend on specific application
Moore’s Law

Number of transistors per chip increases exponentially due to shrinking size of transistors

Unfortunately the fixed costs (NRE) increase for modern technology; bad for small-scale users like detector community
Silicon strip sensors

- ATLAS SLHC silicon area: >150 m²; CMS LHC: 200 m² today; GLAST: 80 m²; variants of CALICE (MAPS): 2000 m²
- Industry is achieving incredible performance for sensors

K. Hara; IEEE NSS Portland 2004

However there are not many vendors and SLHC is tougher
The SVX readout chip family

- Increasing feature size makes chips smaller
- Adding new features (e.g. analog-to digital conversion; deadtime-less readout) makes them bigger

The SVX2 was a crucial ingredient to the top quark discovery at the Tevatron collider at FNAL near Chicago
Multi-chip-carrier/hybrid

• carries readout chips and passive components (resistors and capacitors)

• distributes power and control signals to chips; routes data signals out

• filters sensor bias voltage

Typical have 4 conductor layers separated by dielectric/insulation layers

Example: ceramic BeO hybrid for the CDF detector

Size: 38 mm x 20 mm x 0.38 mm
4-chip hybrid: top layer

Package efficiency: 31%; 30 passive components; material: 0.18% rad. length; no technical problems; yield on 117 hybrids: 90% (after burn-in)
Critical parameters for hybrids

• want low-Z material and small feature size and thickness (minimize multiple scattering)

• good heat conduction to cooling tubes

• reliability/ high yield

• good electrical performance
Packaging

“Packaging is what makes your cell phone small”

Cell phone, Digital camera, PDA, Web access, Outlook

How to stack sensors; MCMs; chips; CF support; cables and cooling while connecting them electrically, thermally and mechanically?
Technological challenges: **Pixel detector**

- **innovative packaging of sensor/chips/support structure/cooling**
 - sophisticated, crowded flex-hybrid
 - carbon-carbon support structures
 - bump-bonding of chips to sensors
 - direct cooling of chips

- **Global and local support structures:** stiff; lightweight; precise; “zero” thermal expansion
Technological challenges: **Pixel detector**

- **Bump-bonding of chips to sensors:**

pitch of only 50 µm (commercial pitches \approx 200 µm)
Packaging solution for SCT

Still very compact

- flex-hybrid with connectors
- separate optical readout for each module
- separate power for each module
- cooling pipes not integrated to structure
Radiation-hard sensors

1. **Radiation induced leakage current**
 independent of impurities; every 7°C of temperature reduction halves current
 ⇔ cool sensors to ≈ -25°C (SCT = -7°C)

2. “**type inversion**” from n to p-bulk
 ⇔ increased depletion voltage
 oxygenated silicon helps (for protons);
 n+-in-n-bulk or n+-in-p-bulk helps

3. **Charge trapping**
 the most dangerous effect at high fluences
 ⇔ collect electrons rather than holes
 ⇔ reduce drift distances
Strong candidate for inner layer: 3D pixels

- 3D pixel proposed by Sherwood Parker in 1985
- vertical electrodes; lateral drift; shorter drift times; much smaller depletion voltage
- Difficulty was non-standard via process; meanwhile much progress in hole etching; many groups; simplified designs

see talk of Sabina R. (ITC-irst)
Signal loss vs. fluence
see C. da Via’s talk at STD6 “Hiroshima” conference

3D silicon C. DaVia et a. March 06
Diamond W. Adam et al.
NIMA 565 (2006) 278-283
n-on-p strips P. Allport et al.
IEEE TNS 52 (2005) 1903
n-on-n pixels CMS T. Rohe et al.
NIMA 552(2005)232-238
C. Da Via’/ Aug 06

3D pixels perform by far the best
Large Hadron Collider: the world’s most powerful accelerator

7 TeV protons vs. 7 TeV protons; 27 km circumference
7 x the energy and 100 x the luminosity of the Tevatron

ATLAS detector
ATLAS detector

- Huge multi-purpose detector; 46 m long; diameter 22 m; weight 7000 t
- Tracking system much smaller; 7 m long; diameter 2.3 m; 2 T field
ATLAS Silicon Tracker

17 thousand silicon sensors (60 m²)
6 M silicon strips (80 µm x 12.8 cm)
80 M pixels (50 µm x 400 µm)

40 MHz event rate; > 50 kW power
What’s charged particle tracking?

1. Measure (many) space points/hits of charged particles
2. Sort out the mess and reconstruct particle tracks

Difficulty is:
- not to get confused
- achieve track position resolution of 5-10 µm

…it’s not easy!
Status as of October 2006
How does it look in real life? **SCT Detector**

- 4 barrel layers at 30, 37, 45, 52 cm radius and 9 discs (each end)
- 60 m² of silicon; 6 M strips; typical power consumption ≈ 50 kW
- Precision carbon fiber support cylinder carries modules, cables, optical fiber, and cooling tubes
- Evaporative cooling system based on C₃F₈ (same for pixel detector)
Excellent build precision! Resolution will improve after alignment and for higher momentum tracks
Why tracking at LHC is tough?

- Too many particles in too short a time
 - 1000 particles / bunch collision
 - too short: collisions every 25 ns

- Too short ⇔ need fast detectors and electronics; power!

- Too many particles ⇔
 - need high resolution detectors with millions of channels
 - detectors suffer from radiation damage

 to date this requires silicon detectors
Example

Need many channels to resolve multi-track patterns

Expect 30-60 M strips and >100 M pixels
Extreme radiation levels!

- Radiation levels vary from 1 to 50 MRad in tracker volume
 - less radiation at larger radii; more close to beam pipe
 - more radiation in forward regions

- Fluences vary from to 10^{13} to 10^{15} particles/cm2

- **Vicious circle:** need silicon sensors for resolution and radiation hardness ↔ cooling (sensors and electronics) ↔ more material ↔ even more secondary particles etc.

Don’t win a beauty contest in this environment, but detectors are still very good!
Extreme radiation levels!

Plots show radiation dose and fluence per high luminosity LHC year for ATLAS (assuming 10^7 s of collisions; source: ATL-Gen-2005-001)

Fluence [1 MeV eq. neutrons/cm2] Radiation dose [Gray/year]

“Uniform thermal neutron gas”

- Neutrons are everywhere and cannot easily be suppressed

Put your cell phone into ATLAS!
It stops working after 1 s to 1 min.
The Boring masks the Interesting

$H \rightarrow ZZ \rightarrow \mu\mu ee$ + minimum bias events ($M_H = 300$ GeV)

LHC in 2008 ?? : 10^{32} cm$^{-2}$s$^{-1}$

LHC first years: 10^{33} cm$^{-2}$s$^{-1}$

LHC: 10^{34} cm$^{-2}$s$^{-1}$

SLHC: 10^{35} cm$^{-2}$s$^{-1}$
Why are silicon detectors so popular?

- Start from a large signal ⇔
 good resolution; big enough for electronics
- Signal formation is fast

- Radiation-hardness
- SiO$_2$ is a good dielectric

- Ride on technological progress of Microelectronics industry
 ⇔ extreme control over impurities; very small feature size; packaging technology

- Scientist and engineers developed many new concepts over the last two decades
Technologies come and go

Random examples are

• Bubble chamber
Technologies come and go
Silicon detectors are not yet going!

Future detectors are being designed and will be

- **Larger:** 200-2000 m²
- **More channels:** Giga pixels
- **Thinner:** 20 μm
- **Less noise**
- **Better resolution**

Your next digital camera will be better and cheaper as well