Phenomenology at collider experiments [Part 4: BSM physics]

Frank Krauss

IPPP Durham

HEP Summer School 31.8.-12.9.2008, RAL

Phenomenology at collider experiments [Part 4: BSM physics]

.

Outline

Beyond the Standard Model: Why?

1

Why SUSY is good for you?

The minimal SUSY model

Models with extra dimensions

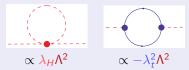
Technicolour

F. Krauss

Phenomenology at collider experiments [Part 4: BSM physics]

Looking for physics beyond the Standard Model

Motivation


- SM is a model with 18(+1) parameters, can this be reduced?
- Somewhat related: Can a GUT be constructed a theory with only one interaction rather than three?
- If there is a GUT, it presumably lives at scales $O(10^{16} \text{GeV})$. A big desert from μ_{EWSB} to μ_{GUT} ? (The "philosophical" hierarchy problem)
- How can gravity be incorporated at all? Gauge constructions of gravity are tricky.
- If dark matter is fundamental, where is it? The SM has no viable candidates.
- Let's not even start with dark energy/cosmological constant.

IPPP

Looking for physics beyond the Standard Model

Another nasty feature: The technical hierarchy problem

• Consider two corrections to the mass of the Higgs boson:

• Each of them is quadratically divergent, with a brute-force cutoff Λ .

(Think of it as limit of validity of SM, $\mu_{\rm GUT}$, or scale of new physics kicking in)

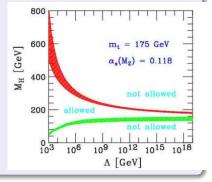
Remark: In QED, the fermion self-energy is only log-divergent due to gauge symmetry. Not a help here.

• Huge finetuning of renormalization mandatory to keep $m_H \approx vev$.

(One-loop correction terms alone $\propto \mu^2_{
m GUT}$)

• Two solutions: Lower Λ (idea behind extra dimensions) or introduce a symmetry, e.g. $\lambda_H = \lambda_t^2$ (SUSY)

|▲口▼▲□▼▲目▼▲目▼ 目 うぐの


Looking for physics beyond the Standard Model

Aside: Could the Standard Model survive up to μ_{Planck} ?

• Remember:
$$m_H^2 = \lambda v^2$$

(v = vev = 246 GeV)

- Two constraints on mass:
 - Keep perturbativity: $\lambda \to \infty$ forbidden.
 - 2 Keep vacuum structure: $\lambda \rightarrow 0$ forbidden.
- Therefore: "Stable island" in the middle

F. Krauss

The idea behind supersymmetry

What is supersymmetry?

- Remember quantization through operators:
 - Have creation and annihilation operators $\hat{a}^{(\dagger)}$: $\hat{a}^{\dagger}|n\rangle \propto |n+1\rangle$, $\hat{a}|n\rangle \propto |n-1\rangle$, and $\hat{a}|0\rangle = 0$.
 - Quantization achieved through fixing their relation Commutator: [â, â[†]] ∝ i, [â, â] = [â[†], â[†]] = 0
- Commutator for bosonic degrees of freedom.
- Anticommutator $\{f_1, f_2\} = f_1f_2 + f_2f_1$ for fermionic d.o.f..
- Supersymmetry:
 - Construct operation \hat{Q} linking bosonic and fermionic states: $\hat{Q}|b\rangle = |f\rangle \& \hat{Q}^{\dagger}|f\rangle = |b\rangle.$
 - Demand invariance under this operation
 - Therefore: For each bosonic d.o.f. in your model a fermionic one is mandatory and vice versa ⇒ b, f ∈ one "superfield"

(This is the symmetry from above: Scalar and fermion belong to same superfield, therefore same coupling)

- * 中 * 御 * * 国 * * 国 * * 9 * 6

The benefits of supersymmetry

A collection of reasons why this is a good model

Two "philosophical" in principle reasons:

- The Coleman-Mandula Theorem states that the construction of a quantum theory of graviation in form of a local gauge theory is feasible only in the framework of supersymmetric theories.
- The Haag-Sohnius-Lopuszanski Theorem states that the maximal symmetry of the S-matrix of a consistent QFT is given by the direct product of Lorentz-invariance, gauge symmetry and supersymmetry.

The benefits of supersymmetry

Some more "technological" remarks

- Quadratic divergences are cancelled.
 For each loop with bosonic d.o.f. (sign = +), there is one with fermionic d.o.f. (sign = -) with exactly the same coupling, mass etc.: only difference is the sign!
 Perfect cancellation of quadratic divergences.
- Extra particles may help in enforcing unification of couplings.
- The vacuum energy arising in second quatization (zero-mode energy of harmonic oscillator) is exactly cancelled by fermions
 Wacuum energy is exactly 0

```
(Compare: Cosmological constant)
```

• Typically, SUSY models have a natural dark matter candidate (a stable WIMP=LSP) with reasonable mass for CDM.

(Caveat: Only after SUSY-breaking)

▲日▼▲□▼▲目▼▲目▼ 回 ろくぐ

イロン 人間と 人間と 人間と

Field content before EWS/SUSY breaking: all massless

Matter fields: left-handed doublets right-handed singlets Weyl-spinors/complex scalars generations J = 1, 2, 3	$\begin{pmatrix} u^{J} \\ d^{J} \end{pmatrix}_{L} u^{J}_{R}, d^{J}_{R}$ $\begin{pmatrix} \nu^{J} \\ \ell^{J} \end{pmatrix}_{L} \ell^{J}_{R}$	$\begin{pmatrix} \tilde{u}^{J} \\ \tilde{d}^{J} \end{pmatrix}_{L} \tilde{u}_{R}^{J}, \tilde{d}_{R}^{J} \\ \begin{pmatrix} \tilde{\nu}^{J} \\ \tilde{\ell}^{J} \end{pmatrix}_{L} \tilde{\ell}_{R}^{J}$
Gauge fields: spin-1 bosons/Weyl-spinors generators a = 1 ng	G^a_μ , $W^{\pm,0}_\mu$, B_μ	$ ilde{\psi}_{\sf G}^{\sf a}$, $ ilde{\psi}_{\sf W}^{\pm,0}$, $ ilde{\psi}_{\sf B}$
Higgs fields: 2 doublets (i=1,2) of Complex scalars/Weyl-spinors	$\left(\begin{array}{c}H_i^1\\H_i^2\end{array}\right)_L$	$\left(\begin{array}{c} \tilde{\psi}^1_{H_i} \\ \tilde{\psi}^2_{H_i} \end{array}\right)_L$

Breaking SUSY ...

... is unfortunately necessary

- Pattern: SUSY partners with quantum numbers as SM particles, differing just in spin by a half unit
- SUSY must be broken: no superpartner (with identical mass) found
- Various mechanisms advocated, barely tractable
- Way out: Breaking by hand through "soft term"

(Terms that do not spoil the nice features, like absence of quadratic divergences)

- This introduces \approx 100 new parameters in MSSM: mostly boiling down to all possible mixings.
- Typically imposed: *R*-parity Pictorial: SUSY particles always pairwise in vertex! Consequence: A lightest stable SUSY particle (LSP).

		MSSM		
The MSSM :	spectrum after E	WS/SUSY br	eaking	
				The MSSM spectrum after EWS/SUSY breaking

- The SM matter content (apart from Higgs sector) remains.
- In the Higgs sector, the 8 scalar real Higgs fields are reduced to 5:
 - 2 neutral scalars: $h_0 \& H_0$, 1 neutral pseudoscalar: A_0 ,
 - 2 charged scalars H^{\pm}
 - the three other fields are "eaten" by gauge bosons (Higgs-mechanism a la SM)
- The up-type and down type sfermions mix (6×6 matrix), typically only L – R mixing in third generation important, inter-generations still by CKM (helps with flavour constraints)
- Neutral Weyl spinors $(\psi_B, \psi_{W^0}, \psi_{H_1^0}, \& \psi_{H_2^0}) \rightarrow 4$ neutralinos
- Charged Weyl spinors $(\psi_{W^{\pm}} \& \psi_{H^{\pm}}) \rightarrow 2$ charginos

イロト イポト イヨト イヨト

Order from chaos

... or: the striking power of (over-)simplification

- Prospect of measuring $\mathcal{O}(100)$ new parameters a nightmare
- Maybe better to cook up theory-inspired "SUSY-breaking scenarios"
- Various such scenarios on the market: gauge-mediation, anomaly-mediation, mSUGRa
- Common feature:

Have an extra sector of the theory, potentially "GUTty", will not respect SUSY and mediates information in some way.

- Benefit: Few parameters ($\mathcal{O}(5)$) to describe spectrum + interaction.
- In mSUGRA/CMSSM:
 - m_A , tan β for Higgs sector we've been there
 - $m_{1.2}$, m_0 , A for soft breaking terms (mass+trilinear couplings)

IPPP

Searching for SUSY

Some wild collection of signals

- With *R*-parity: Everything eventually decayss into LSP (χ_1^0) \longrightarrow short or long decay chains
- Most prominent production: SQCD pair production (*g̃g*, *g̃q̃*, ...) will lead to signatures ∉_⊥+ jets, eventually with leptons

(the latter from decays like $\chi_2^0 \to \chi_1^0 + \ell \bar{\ell}$ or $\chi_1^\pm \to \ell^\pm \nu \chi_1^0$ along the decay chain)

イロト イヨト イヨト イヨト

- Also well studied:
 - $\tilde{\ell}$ -pair production: Kinematically like Drell-Yan of heavy lepton with (long) decay chain of $\tilde{\ell} \to \tilde{\chi}_i^0 \to \dots$
 - $\chi_2^0 \chi_1^{\pm}$, yielding a tri-lepton signal.

Searching for SUSY

Example cross sections

F. Krauss

	Extra dimensions	

The idea behind extra dimensions

- Remember the hierarchy problem: Quadratic divergences pull m_H towards highest scale. m_{Planck} is the scale where the pure SM (no new physics) breaks down, since gravitation becomes quantum.
- So, the problem is maybe not the divergence structure, but $m_{\rm Planck}$.
- Connection with gravitational force: $G_N = \frac{1}{(16\pi m_{\text{Planck}})^2}$
- Size of Planck scale maybe due to too weak gravitation?
- Could play with it by changing geometrical setup (more dims), dimensions are finite (size *R*), typically "curled up"
- Particles allowed to propagate in extra dimensions will show a pattern of Kaluza-Klein towers: Equidistant excitations with $\Delta M \propto 1/R$

 </

The idea behind extra dimensions

Construction of large extra dimensions (ADD)

- Einstein-Hilbert action for true Planck scale M_* : $S = -\frac{1}{2} \int d^4x \sqrt{|g|} M_*^2 \Lambda \longrightarrow -\frac{1}{2} \int d^{4+n}x \sqrt{|g|} M_*^{2+n} \Lambda$
- Compactify additional dimensions on torus $R: S \longrightarrow -\frac{1}{2}(2\pi R)^n \int d^4x \sqrt{|g|} M_*^{2+n} \Lambda$
- Match to "measured" Planck scale: $S = -\frac{1}{2} \int \mathrm{d}^4 x \sqrt{|g|} m_{\rm Planck}^2 \Lambda$
- Therefore: $m_{\text{Planck}} = M_* (2\pi R M_*)^{n/2}$
- Want $RM_* \gg 1$.
- Numbers for $M_* pprox 1$ TeV in table
- Check gravity at mm scales.

n	R
1	10 ¹² m
2	10 ⁻³ m
3	10 ⁻⁸ m
÷	:
6	10^{-11} m

	Extra dimensions	

Zoology of extra dimensions

- Large extra dimensions/ADD:
 - Have only gravity propagating in "bulk", SM on "brane"
 - KK towers of gravitons with small mass distance 1/R
 - Gravitons couple weakly to SM particles with energy-momentum tensor $T^{\mu
 u}/M_{
 m planck}$
 - Look for spin-2 exchange with "continous mass" or graviton leaving detector.
- Universal extra dimensions/small extra dimensions:
 - All particles in "bulk", typically 1-2 ED
 - Every SM particle gains KK towers with sizable distance 1/R

		Technicolour

The idea behind technicolour

- Problem with Higgs boson self-energy, because it is an elementary scalar, and no gauge prevents quadratic divergences
- Make the Higgs boson composite!
- Analogy: Pions made off quarks (χSB)
- Add extra (techni-)fermions with new strong (techni-)interaction
- Main problems:
 - Strong coupling for bound states, make sure it does not run too fast. Solution: Use different representation for fermions.

(Walking technicolour)

- May have to add leptons to kill anomalies.
- Technifermions form technimesons, partially eaten by gauge bosons
- Survivors of the multiplets (techni-ρ's etc.) visible at the LHC similar to Z', W': resonances from Z' → ff etc..