Phenomenology at collider experiments [Part 1: QCD]

Frank Krauss

IPPP Durham

HEP Summer School 31.8.-12.9.2008, RAL

Phenomenology at collider experiments [Part 1: QCD]

(日) (同) (三) (三)

QCD radiation

Outline

Introductory remarks

2 LHC: QCD processes rule

3

The pattern of QCD radiation

Basics for dealing with QCD jets

- * ロ * * @ * * 注 * 注 * うへぐ

F. Krauss

Chasing the energy frontier

View of the 1990's ...

|▲口▶|▲□▶|▲臣▶|▲臣▶||臣|||夕久(?)

F. Krauss

Phenomenology at colliders

The past up to LEP and Tevatron

- 1950's: The particle zoo Discovery of hadrons, but no order criterion
- 1960's: Strong interactions before QCD Symmetry: Chaos to order
- 1970's: The making of the Standard Model: Gauge symmetries, renormalizability, asymptotic freedom Also: November revolution and third generation
- 1980's: Finding the gauge bosons Non-Abelian gauge theories are real!
- 1990's: The triumph of the Standard Model at LEP and Tevatron Precision tests for precision physics

Phenomenology at colliders

The present: LHC

- Historical trend: Hadron colliders for discovery physics Lepton colliders for precision physics.
- Historical trend: Shape your searches know what you're looking for. This has never been truer.
- In last decades: Theory triggers, experiment executes. Also true for the LHC?

▲ロト ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへの

Setting the scene

Reminder: The Standard Model

- 3 generations of matter fields:
 - left-handed doublets, right-handed singlets

	Quarks			Leptons	
$\left(\begin{array}{c} u \\ d \end{array} \right)_L$	$\begin{pmatrix} c \\ s \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b\end{array}\right)_L$	$\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L$	$\left(\begin{array}{c}\nu_{\mu}\\\mu\end{array}\right)_{L}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_L$
^u R d _R	c _R ₅R	t _R b _R	e _R	μR	τ _R

- (Broken) gauge group: $SU(3) \times SU(2) \times U(1) \rightarrow SU(3) \times U(1)$: 8 gluons, 3 (massive) weak gauge bosons, 1 photon
- Electroweak symmetry breaking (EWSB) by introducing a complex scalar doublet (Higgs doublet) with a vacuum expectation value (vev) ⇒ 1 physical Higgs scalar

Setting the scene: How we know what we know

EW precision data

	Measurement	Fit	0 ^{meas} -0 ^{ft} /σ ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_2)$	0.02758 ± 0.00035	0.02767	-
m _z [GeV]	91.1875 ± 0.0021	91.1875	
Γ _z [GeV]	2.4952 ± 0.0023	2.4958	-
o ⁰ had [nb]	41.540 ± 0.037	41.478	
R	20.767 ± 0.025	20.743	
A ^{0,1}	0.01714 ± 0.00095	0.01644	
A(P.)	0.1465 ± 0.0032	0.1481	
Rb	0.21629 ± 0.00066	0.21582	
Re	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
A,	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1481	
sin ² 0 ^{lapt} (Q _b)	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.025	80.376	
Г _w [GeV]	2.098 ± 0.048	2.092	<u> </u>
m, [GeV]	172.4 ± 1.2	172.5	<u> </u>
July 2008			0 1 2 3
(fr	om LEP EW	WG pu	blic page)

▲ロト▲聞と▲臣と▲臣と 臣 めんぐ

F. Krauss

QCD radiation

Setting the scene

Open questions (private preference)

- True mechanism of EWSB: Higgs mechanism in its minimal or an extended version or something different?
- Generations: Three or more?
- More symmetry: Is there low-scale Supersymmetry?
- Space-time: How many dimensions? Four or more?
- Cosmology: Any candidates for dark matter?

LHC - The energy frontier

Design defines difficulty Design paradigm for LHC: Build a hadron collider Build it in the existing LEP tunnel Build it as competitor to the 40 TeV SSC Consequence: LHC is a pp collider LHC operates at 10-14 TeV c.m.-energy Solution LHC is a high-luminosity collider: 100 fb^{-1}/y Trade energy vs. lumi, thus pp Physics: Check the EWSB scenario & search for more

- Fight with overwhelming backgrounds, QCD always a stake-holder
- Sonsider niceties such as pile-up, underlying event etc..

< ロ > < 団 > < 三 > < 三 > < 三 > < つ < ぐ

LHC - The energy frontier

Some example cross sections

Or: Yesterdays signals = todays backgrounds

Process	Evts/sec.	
Jet, $E_{\perp} > 100 \text{ GeV}$	10 ³	
Jet, $E_{\perp} > 1~{ m TeV}$	$1.5 \cdot 10^{-2}$	
bb	$5\cdot 10^5$	
tī	1	
$Z \to \ell \ell$	2	
$W \to \ell \nu$	20	
$WW ightarrow \ell u \ell u$	$6\cdot 10^{-3}$	
Rates at "low" luminosity,	$\mathcal{L} = 10^{33} / \mathrm{cm}^2 \mathrm{s} = 1$	0^{-1} fb $^{-1}/$

▲ロト▲聞▶▲臣▶▲臣▶ 臣 のQで

F. Krauss

Cross sections at hadron colliders

Master formula

Production cross section for final state Φ in *AB* collisions:

$$\sigma_{AB\to\Phi+X} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f_{a/A}(x_1,\mu_F^2) f_{b/B}(x_2,\mu_F^2) \hat{\sigma}_{ab\to\Phi}(\hat{s},\mu_F^2,\mu_R^2)$$

where

- $x_{1,2}$ are momentum fractions w.r.t. the hadron, $\hat{s} = x_1 x_2 s$;
- $\hat{\sigma}_{ab\to\Phi}(\hat{s},\mu_F^2,\mu_R^2)$ is the parton-level cross section,
- and where $f_{a/A}(x, Q^2)$ is the parton distribution function (PDF).

Parton picture

- Parton picture: Hadrons made from partons.
- Distribution(s) of partons in hadrons: not from first principles, only from measurements.
- First idea: probability to find parton *a* in hadron *h* only dependent on Bjorken-*x* ($x = E_a/E_h$ or similar) – "Bjorken-scaling" $\mathcal{P}(a|h) = f_a^h(x)$ (LO interpretation of PDF).
- But QCD: Partons in partons in partons \implies scaling behavior of PDFs: $f = f(x, Q^2)$.
- Still: PDFs must be measured, but scaling in Q^2 from theory (DGLAP, resums large logs of Q^2)

- 4 同 ト 4 三 ト 4 三 ト

Space-time picture of hard interactions

Hard interaction at scales $Q_{hard} \gg 1/R_{had}$.

- Too "fast" for color field only one parton takes part.
- Other partons feel absence only when trying to recombine.
- Universality (process-independence) of PDFs.
- Collinear factorization.

Determination of PDFs: Strategy in a nutshell

• Ansatz g(x) for PDFs at some fixed value of $Q_0^2 = Q^2 \approx 1 \text{GeV}^2$. For example, MRST/MSTW (personal Durham bias):

$$\begin{aligned} xu_v &= A_u x^{\eta_1} (1-x)^{\eta_2} (1+\varepsilon_u \sqrt{x}+\gamma_u x) \\ xd_v &= A_d x^{\eta_2} (1-x)^{\eta_4} (1+\varepsilon_d \sqrt{x}+\gamma_d x) \\ xs &= A_5 x^{-\lambda} S(1-x)^{\eta_5} (1+\varepsilon_5 \sqrt{x}+\gamma_5 x) \\ xg &= A_g x^{-\lambda} g(1-x)^{\eta_g} (1+\varepsilon_g \sqrt{x}+\gamma_g x) \end{aligned}$$

- Collect data at various x, Q^2 , use DGLAP equation to evolve down to Q_0^2 and fit parameters (including α_S).
- Ensure sum rules (Gottfried, momentum, ...).

(4月) (三) (三)

Determination of PDFs: Data input

Example: MSTW parameterization and their effect:

New data included. xg(x, Q² = 10 GeV²) NuTeV and Chorus data on $F_2^{\nu,\delta}(x,Q^2)$ and $F_3^{\nu,\delta}(x,Q^2)$ replacing CCFR. NuTeV and CCFR dimuon data included directly. Leads to a direct constraint on 1 b $s(x, Q^2) + \bar{s}(x, Q^2)$ and on $s(x, Q^2) - \bar{s}(x, Q^2)$. Affects other partons. CDFII lepton asymmetry data in two different E_T bins – $25 \text{GeV} < E_T < 35 \text{GeV}$ and Tevatron and HERA jet data $35 \text{GeV} < E_T < 45 \text{GeV}$. Fit only Tevatron jet data HERA inclusive jet data (in DIS). 10 Fit only HERA jet data New CDFII high- E_T jet data. Fit pseudogluon and Apen (~ MRST2004) Direct high-x data on $F_{T}(x, Q^{2})$. Fit without any jet data Undate to include all recent charm structure function data 10-2 104 10'1 Look at dependence of fit on m_{e} - defined as pole mass. (From R.Thorne's talk at DIS 2007)

F. Krauss

IPPP

PDFs and factorization

Uncertainties of global PDFs: CTEQ6E vs. MRST2006 NNLO

F. Krauss

イロト イヨト イヨト イヨト 크

F. Krauss

Higher-order corrections

Specifying higher-order corrections: $\gamma^* \rightarrow$ hadrons

- In general: $N^n LO \leftrightarrow \mathcal{O}(\alpha_s^n)$
- But: only for inclusive quantities

(e.g.: total xsecs like $\gamma^* \rightarrow hadrons$).

Counter-example: thrust distribution

- In general, distributions are HO.
- Distinguish real & virtual emissions: Real emissions → mainly distributions, virtual emissions → mainly normalization.

Higher-order corrections

Anatomy of HO calculations: Virtual and real corrections

ILO corrections: $\mathcal{O}(c$	εs)
Virtual corrections	=
Real corrections	_

- extra loops
- extra legs

- $\bullet~UV\text{-divergences}$ in virtual graphs $\rightarrow~renormalization$
- But also: IR-divergences in real & virtual contributions Must cancel each other, non-trivial to see: N vs. N + 1 particle FS, divergence in PS vs. loop

Higher-order corrections

Cancelling the IR divergences: Subtraction method

- Total NLO xsec: $\sigma_{\rm NLO} = \sigma_{\rm Born} + \int d^D k |\mathcal{M}|_V^2 + \int d^4 k |\mathcal{M}|_R^2$
- IR div. in real piece \rightarrow regularize: $\int d^4k |\mathcal{M}|_R^2 \rightarrow \int d^Dk |\mathcal{M}|_R^2$
- Construct subtraction term with same IR structure: $\int d^D k \left(|\mathcal{M}|_R^2 - |\mathcal{M}|_S^2 \right) = \int d^4 k |\mathcal{M}|_{RS}^2 = \text{finite.}$ Possible: $\int d^D k |\mathcal{M}|_S^2 = \sigma_{\text{Born}} \int d^D k |\tilde{\mathcal{S}}|^2, \text{ universal } |\tilde{\mathcal{S}}|^2.$
- $\int d^D k |\mathcal{M}|_V^2 + \sigma_{Born} \int d^D k |\tilde{\mathcal{S}}|^2 = \text{finite (analytical)}$
- Has been automated in various programs.

イロン イ団と イヨン ・

Cross sections @ hadron colliders

F. Krauss

Cross sections @ hadron colliders

Tree-level tools

	Models	$2 \rightarrow n$	Ampl.	Integ.	public?	lang.
Alpgen	SM	n = 8	rec.	Multi	yes	Fortran
Amegic	SM,MSSM,ADD	n = 6	hel.	Multi	yes	C++
CompHep	SM,MSSM	n = 4	trace	1Channel	yes	С
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MadEvent	SM,MSSM,UED	n = 6	hel.	Multi	yes	Fortran
O'Mega	SM,MSSM,LH	n = 8	rec.	Multi	yes	O'Caml

Loop-level tools (one loop)

	Processes	public?	lang.
MCFM	SM, 3-particle FS	yes	Fortran
NLOJET++	up to 3 light jets	yes	C++
Prospino	MSSM pair production	yes	Fortran

F. Krauss

To take home

LHC, the QCD machine

- There are no LHC events without QCD!!!
- Perturbative expansion in α_S sufficiently well understood, but: hard to calculate beyond (N)LO.
- Important input to xsec calculations: PDFs Must be taken from data, only scaling from QCD
- Order of an calculation is observable-dependent make sure you know what you're talking about.

From parton to hadron level

Limitations of parton level calculations

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity ⇒ no clean way toward exclusive final states.
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level experimental definition of observables relies on hadrons.

Therefore: Need hadron level! Must dress partons with radiation! (will also enable universal hadronization)

Origin of radiation

Accelerated charges radiate

- Well-known: Accelerated charges radiate
- QED: Electrons (charged) emit photons Photons split into electron-positron pairs
- QCD: Quarks (colored) emit gluons Gluons split into quark pairs
- Difference: Gluons are colored (photons are not charged) Hence: Gluons emit gluons!
- Cascade of emissions: Parton shower

Pattern of radiation

Leading logs: $e^+e^- \rightarrow \text{jets}$

• Differential cross section:

$$\frac{\mathrm{d}\sigma_{ee \to 3j}}{\mathrm{d}x_1 \mathrm{d}x_2} = \sigma_{ee \to 2j} \frac{C_F \alpha_s}{\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

Singular for $x_{1,2} \rightarrow 1$.

• Rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{c.m.}$:

$$\frac{\mathrm{d}\sigma_{ee} \to 3j}{\mathrm{d}\cos\theta_{qg}\,\mathrm{d}x_3} = \sigma_{ee} \to 2j \frac{C_F \alpha_s}{\pi} \left[\frac{2}{\sin^2 \theta_{qg}} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right]$$

Singular for $x_3 \rightarrow 0$ ("soft"), $\sin \theta_{qg} \rightarrow 0$ ("collinear").

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の久で

F. Krauss

QCD radiation

Pattern of radiation

Leading logs: Collinear singularities

Use

2d cos θ _{qg} _	d cos θ_{qg}	$d \cos \theta_{qg}$	d cos θ_{qg}	d cos $\theta \bar{q}g$	$\sim d\theta_{qg}^2$	$d\theta_{\bar{q}g}^2$
sin ² θ _{qg} –	$1 - \cos \theta_{qg}$	$\frac{1}{1 + \cos \theta_{qg}}$	$1 - \cos \theta_{qg}$	$1 - \cos \theta_{\bar{q}g}$	$\sim \frac{\theta_{qg}^2}{\theta_{qg}^2}$	$\theta_{\bar{a}g}^2$

• Independent evolution of two jets (q and \bar{q}):

$$\mathrm{d}\sigma_{ee\to 3j} \approx \sigma_{ee\to 2j} \sum_{j \in \{q,\bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{\mathrm{d}\theta_{jg}^2}{\theta_{jg}^2} P(z) \; ,$$

where $P(z) = \frac{1+(1-z)^2}{z}$ (DGLAP splitting function)

- ▲日 > ▲ 画 > ▲ 画 > ▲ 画 > ろんの

F. Krauss

Pattern of radiation

Leading logs: Parton resolution

- What is a parton? Collinear pair/soft parton recombine!
- Introduce resolution criterion $k_{\perp} > Q_0$.

• Combine virtual contributions with unresolvable emissions: Cancels infrared divergences \implies Finite at $\mathcal{O}(\alpha_s)$

Occurrence of large logarithms

Many emissions: Parton parted partons

• Iterate emissions (jets)

Maximal result for $t_1 > t_2 > \ldots t_n$:

$$\mathrm{d}\sigma \propto \sigma_0 \int_{Q_0^2}^{Q^2} \frac{\mathrm{d}t_1}{t_1} \int_{Q_0^2}^{t_1} \frac{\mathrm{d}t_2}{t_2} \dots \int_{Q_0^2}^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n} \propto \log^n \frac{Q^2}{Q_0^2}$$

• How about *Q*²? Process-dependent!

Occurrence of large logarithms

$q_1^2 > q_2^2 > q_3^2, \; q_1^2 > {q_2'}^2$

▲ロ → ▲ 圖 → ▲ 圖 → ▲ 圖 → 今へで

F. Krauss

Running coupling

• Effect of summing up higher orders (loops): $\alpha_s \rightarrow \alpha_s(k_{\perp}^2)$

• Much faster parton proliferation, especially for small k_{\perp}^2 .

• Must avoid Landau pole: $k_{\perp}^2 > Q_0^2 \gg \Lambda_{\rm QCD}^2$ $\implies Q_0^2 = physical parameter.$

Soft logarithms : Angular ordering

- In principle, independence on collinear variable:
 t (inv.mass), k²_⊥, θ all lead to same leading logs
- But: Soft limit for single emission also universal
- Problem: Soft gluons come from all over (not collinear!) Quantum interference? Still independent evolution?

• Answer: Not quite independent.

- Transverse momentum and wavelength of photon: $k_{\perp}^{\gamma} \sim zp\theta$, $\lambda_{\perp}^{\gamma} \sim 1/k_{\perp}^{\gamma} = 1/(zp\theta)$.
- Formation time of photon: $\Delta t \sim 1/\Delta E$, $\Delta E \sim \theta/\lambda_{\perp}^{\gamma} \sim zp\theta^2$.
- ee-separation: Δb ~ θ_{ee}Δt ~ θ_{ee} / (zpθ²).
- Must be larger than transverse wavelength: $\Delta b > \lambda_{\perp}^{\gamma} \implies \theta_{ee} > \theta$
- Thus: Angular ordering takes care of soft limit.

IPPP

F. Krauss

F. Krauss

Experimental manifestation of angular ordering ΔR of 2nd & 3rd jet in multi-jet events in pp-collisions @ Tevatron

▲□▶▲□▶▲□▶▲□▶ = のぐら

F. Krauss

Parton showers

Simulating parton radiation

- Catch: Can exponentiate all emissions due to universal log pattern.
- For parton showers use Sudakov form factor:

$$\begin{aligned} \Delta_q(Q^2, Q_0^2) &= & \exp\left[-\int_{Q_0^2}^{Q^2} \frac{\mathrm{d}k^2}{k^2} \int \mathrm{d}z \frac{\alpha_s[k_{\perp}^2(z, k^2)]}{2\pi} P(z)\right] \\ &= & \exp\left[-\int_{Q_0^2}^{Q^2} \frac{\mathrm{d}k^2}{k^2} \bar{P}(k^2)\right] \approx \exp\left[-C_F \frac{\alpha_s}{2\pi} \log^2 \frac{Q^2}{Q_0^2}\right] \end{aligned}$$

• Interpretation: No-emission probability between Q^2 and Q_0^2 .

Parton showers

Tools

	Shower variable	A0?	lang.
Pythia	inv.mass: t	approx.	Fortran
Pythia8	transv.mom.: k_{\perp}^2	yes(?)	C++
Herwig	opening angle	yes	Fortran
Herwig++	mod.opening angle	yes	C++
Ariadne	dipole transv.mom.	yes	Fortran
Sherpa	3 showers: t and $2 \times k_{\perp}^2$	varying	C++

F. Krauss
What are jets?

Jets = collimated hadronic energy

▲日▼▲雪▼▲画▼▲画▼ 画 ものぐの

F. Krauss

The need for jets

Linkir	ng partons and	de	tecto	or signa	als	
Jets occur in decays of heavy objects: Z, W^{\pm} bosons, tops, SUSY, Example: top-decays				Event rates for 10 Process) fb ⁻¹ : Num 10 ⁷	
	Fully hadronic: Jets	Tau + jets	Lepton + Jets		QCD Multijets 3 4 5 6 7 8	$9 \cdot 1$ $7 \cdot 1$ $6 \cdot 1$ $3 \cdot 1$ $2 \cdot 1$ $2 \cdot 1$
	Tau + jets	Taus	Tau + lepton		Tree-level (parton-level) numbers	2.1
	Lepton + Jets				$p_{\perp}^{jet} > 60 \text{ GeV}, \ \theta_{ij} > \pi/6, \ y_i < 3$ Draggiotis, Kleiss & Papdopoulos '02	

Э イロト イヨト イヨト イヨト

Number 10^{7}

 $9\cdot 10^8$ $7 \cdot 10^7$ $6\cdot 10^6$ $3\cdot 10^5$ $2\cdot 10^4$ $2\cdot 10^3$

F. Krauss

Linking partons and detector signals

But: Jets \neq partons!

- Jets are unavoidable whenever partons scatter.
- Perturbative picture well understood. Example: Jet cross sections
- Partons fragment through multiple parton emissions:
 - Soft & collinear divergences dominate
 - Large logs overcome "small" coupling
- No quantitative understanding for transition to hadrons (fate of non-perturbative QCD)
- But: Fragmentation & hadronization dominated by low p |.
- Therefore: Partons result in collimated bunches of hadrons

F. Krauss

General considerations

A jet definition is a set of rules to project large numbers of objects (dozens of partons, hundred's of hadrons, thousand's of calorimeter towers) onto a small number of parton-like objects with one well-defined four-momentum each.

For this jet definition to be useful,

- the rules must be the same, independent of the level of application: QCD resilience/robustness;
- the rules must be complete, with no ambiguities;
- the rules must be experimental feasible and theoretically sensible. \implies Infrared safety crucial!

Robustness

< □ > < □ > < □ > < □ > < □ > < □ >

QCD radiation

Jet definitions

▲口 ▶ ▲厨 ▶ ▲臣 ▶ ▲臣 ▶ ▲日 ▶

Cone jets: Fixed cone, progressive removal Main idea: Define jets geometrically, remove found jets. p./GeV Hardest particle as axis 60 • Take hardest particle = cone axis. Draw cone around it. 50 Convert contents into a "jet" and 40 remove them. 30 Repeat until no particles left. 20 • Parameters: Cone-size, p_{\perp}^{\min} 10 good feature: Simple. Bad feature: Infrared safe. 3 (from G.Salam)

- 4 日 > 4 母 > 4 母 > 4 母 > - 母 - の Q @

Phenomenology at collider experiments [Part 1: QCD]

F. Krauss

Cone jets: Fixed cone, progressive removal Main idea: Define jets geometrically, remove found jets. Convert into jet p./GeV 60 • Take hardest particle = cone axis. Draw cone around it. 50 Convert contents into a "jet" and 40 remove them. 30 Repeat until no particles left. 20 • Parameters: Cone-size, p_{\perp}^{\min} 10 good feature: Simple. Bad feature: Infrared safe.

3 4 y (from G.Salam)

Cone jets: Fixed cone, progressive removal

- Main idea: Define jets geometrically, remove found jets.
- Take hardest particle = cone axis.
- Draw cone around it.
- Convert contents into a "jet" and remove them.
- Repeat until no particles left.
- Parameters: Cone-size, p_{\perp}^{\min}
- good feature: Simple.
- Bad feature: Infrared safe.

- 4 日 > 4 目 > 4 目 > 4 目 > 9 4 @

Cone jets: Fixed cone, progressive removal Main idea: Define jets geometrically, remove found jets. p./GeV Draw cone 60 • Take hardest particle = cone axis. Draw cone around it. 50 Convert contents into a "jet" and 40 remove them. 30 Repeat until no particles left. 20 • Parameters: Cone-size, p_{\perp}^{\min} 10 good feature: Simple. Bad feature: Infrared safe. (from G.Salam)

4 v

Cone jets: Fixed cone, progressive removal

- Main idea: Define jets geometrically, remove found jets.
- Take hardest particle = cone axis.
- Draw cone around it.
- Convert contents into a "jet" and remove them.
- Repeat until no particles left.
- Parameters: Cone-size, p_{\perp}^{\min}
- good feature: Simple.
- Bad feature: Infrared safe.

F. Krauss

Cone jets: Fixed cone, progressive removal

- Main idea: Define jets geometrically, remove found jets.
- Take hardest particle = cone axis.
- Draw cone around it.
- Convert contents into a "jet" and remove them.
- Repeat until no particles left.
- Parameters: Cone-size, p_{\perp}^{\min}
- good feature: Simple.
- Bad feature: Infrared safe.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Cone jets: Fixed cone, progressive removal

- Main idea: Define jets geometrically, remove found jets.
- Take hardest particle = cone axis.
- Draw cone around it.
- Convert contents into a "jet" and remove them.
- Repeat until no particles left.
- Parameters: Cone-size, p_{\perp}^{\min}
- good feature: Simple.
- Bad feature: Infrared safe.

Cone jets: Fixed cone, progressive removal

- Main idea: Define jets geometrically, remove found jets.
- Take hardest particle = cone axis.
- Draw cone around it.
- Convert contents into a "jet" and remove them.
- Repeat until no particles left.
- Parameters: Cone-size, p_{\perp}^{\min}
- good feature: Simple.
- Bad feature: Infrared safe.

k_{\perp} jets

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ij}, until smallest *d*_{ij} > *d*_{cut}.
- Good feature: Infrared safe.

k_{\perp} jets

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ij}, until smallest *d*_{ij} > *d*_{cut}.
- Good feature: Infrared safe.

k_{\perp} jets

▲□▶▲□▶▲□▶▲□▶ □ のへで

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: d_{ij} = min{p²_{i,⊥}, p²_{j,⊥}}ΔR_{ij}, R_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" D.
 Include beams, distance to beam: d_{iB} = p²_{i,⊥}.
 Combine two objects with smallest d_{ij}, until smallest d_{ij} > d_{cut}.
- Good feature: Infrared safe.

▲□▶▲□▶▲≡▶▲≡▶ ≡ の�?

k_{\perp} jets

- * ロ * * 母 * * 目 * * 目 * * の < や

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: d_{ij} = min{p²_{i,⊥}, p²_{j,⊥}}ΔR_{ij}, R_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" D.
 Include beams, distance to beam: d_{iB} = p²_{i,⊥}.
 Combine two objects with smallest d_{ij}, until smallest d_{ij} > d_{cut}.
- Good feature: Infrared safe.

- * ロ * * 母 * * き * き * の < や

k_{\perp} jets

・ ロ ト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: d_{ij} = min{p²_{i,⊥}, p²_{j,⊥}}ΔR_{ij}, R_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" D.
 Include beams, distance to beam: d_{iB} = p²_{i,⊥}.
 Combine two objects with smallest d_{ij}, until smallest d_{ij} > d_{cut}.
- Good feature: Infrared safe.

- * ロ * * 御 * * 王 * * 王 * * の < ?

k_{\perp} jets

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ij}, until smallest *d*_{ij} > *d*_{cut}.
- Good feature: Infrared safe.

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖||||の��

k_{\perp} jets

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ij}, until smallest *d*_{ij} > *d*_{cut}.
- Good feature: Infrared safe.

▲□▶▲□▶▲□▶▲□▶ □ のへで

k_{\perp} jets

F. Krauss

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: d_{ij} = min{p²_{i,⊥}, p²_{j,⊥}}ΔR_{ij}, R_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" D.
 Include beams, distance to beam: d_{iB} = p²_{i,⊥}.
 Combine two objects with smallest d_{ii} > d_{cut}.
- Good feature: Infrared safe.

k_{\perp} jets

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ii} > *d*_{cut}.
- Good feature: Infrared safe.

▲□▶▲圖▶▲≣▶▲≣▶ ■ 少久ぐ

k_{\perp} jets

F. Krauss

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: *d*_{ij} = min{*p*²_{i,⊥}, *p*²_{j,⊥}}Δ*R*_{ij}, *R*_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" *D*.
 Include beams, distance to beam: *d*_{iB} = *p*²_{i,⊥}.
 Combine two objects with smallest *d*_{ii}, until smallest *d*_{ii} > *d*_{cut}.
- Good feature: Infrared safe.

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @
Jet definitions

k_{\perp} jets

(from G.Salam)

Jet definitions

k_{\perp} jets

- Main idea: Sequential recombination
 Distance between two objects *i* and *j*: d_{ij} = min{p²_{i,⊥}, p²_{j,⊥}}ΔR_{ij}, R_{ij} = [cosh² Δη_{ij} + cos² Δφ_{ij}]/D².
 "Cone-size" D.
 Include beams, distance to beam: d_{iB} = p²_{i,⊥}.
 Combine two objects with smallest d_{ii}, until smallest d_{ii} > d_{cut}.
- Good feature: Infrared safe.

F. Krauss

Phenomenology at collider experiments [Part 1: QCD]

Jet definitions

k_{\perp} jets

To take home

Parton-parted partons

- QCD radiation (bremsstrahlung) important
- Dominated by collinear & soft emissions
- Universal pattern of QCD bremsstrahlung
- Fills the phase space between large scales of signal creation and low scales of hadronization
- Well understood in leading log approximation, gives rise to a probabilistic picture: parton showers.

To take home

A jet is (not) a jet is (not) a jet

- Jets are direct result of QCD in hard reactions your primary experimental QCD entities.
- But: A parton is not a jet a jet is what it is defined to be
- Jet definitions must match experimental and theoretical needs otherwise meaningless for comparison
- Infrared safety is a theoretical key requirement
- Many jet algorithms, presumably the "best" one does not exist